The Combined Cooling, Heating and Power (CCHP) system based on multi energy complementation of new energies, as an ideal way to achieve efficient utilization of renewable energy as well as the energy-saving and emission reduction, will be a key component with great prospect of comprehensive energy system in China. Nevertheless, the inherent characteristics as highly random fluctuation, strong coupling nonlinearity and multi time-scale make it extremely difficult in mechanism analysis, configuration and coordinate control, and result in its low efficiency and poor economic benefit. To solve this problem, it is essential to achieve the integrated design and cooperative optimized control of the system. In this project, in order to improve the overall utilization of renewable energy, the steady/dynamic hybrid model describing the system characteristics is developed based on mechanism analysis and data driven technologies. Integrated design and capacity configuration are completed by using multi-attribute decision making and robust optimization theory. The active energy management on energy “source, supply, storage and utilization” are built based on multi-agent method. The simulink and experimental platforms are also built to verify the effectiveness of the proposed theory. Accordingly, a set of theoretical system and technical solution with functions of modeling, design, control and evaluation is developed. The results of this project with interdisciplinary of control, electrical engineering and thermodynamic engineering, etc. are of great significance for energy revolution in China, and lead to a remarkable promotion of the theoretical study of relevant sciences and its applications.
新能源多能互补冷热电联供系统是实现可再生能源高效利用和节能减排的理想途径,将是我国新一代综合能源系统的核心组成部分,极具发展前景。然而,因其固有的高度随机波动性、非线性强耦合、多时间尺度等特征,使得对其机理分析、配置设计和协调控制极其困难,导致系统效率低、经济性差,而解决问题的根本手段是一体化设计与协同优化控制。本项目拟以有效提高可再生能源消纳率与能源综合利用率为宗旨,基于机理分析与数据驱动方法建立系统的多特性稳/动态混合模型,综合运用多属性决策和鲁棒优化理论实现多级一体化设计与容量配置,基于多自主体理论构建“源供储用”主动能量管理机制,并搭建联合仿真平台和试验平台验证新理论方法的有效性,形成和发展一套集建模、设计、控制及评估于一体的理论体系和技术方案。本项目属控制、电气、热工等多学科交叉的前沿方向,其研究成果不仅对推动我国能源革命意义重大,而且对相关科学的理论研究和应用具有显著促进作用。
“双碳”目标背景下,以新能源为核心的多能互补冷热电联供(CCHP)系统,已成为能源转型的必然选择。本项目运用控制、电气、热能等多学科交叉理论,攻克了多能流统一动态建模、“结构-容量-运行”一体化设计、“源-网-荷-储”多时间尺度随机优化、新能源发电系统一致性精准控制关键科学难题,并取得了丰硕的研究成果:①揭示了多能互补CCHP系统复杂运行特性,构建了CCHP系统多能流矩阵模型,提出了量纲一致的多能流统一建模方法,构建了多能流统一动态等效电路模型,为系统一体化设计、优化控制提供模型基础;②建立了量质兼顾的多能互补综合评价体系,提出了“结构-容量-运行”一体化设计方法和时空转换的高效求解算法,实现多能互补CCHP系统的全局最优设计;③提出了基于人工智能的“源-荷”精准预测方法,建立了多时间尺度随机优化控制框架及日前随机优化-滚动优化策略,形成了“源-网-荷-储”协同优化控制体系,保障系统的高效、经济、环保运行;④提出了新能源并网装备精准控制和多装备协同控制方法,提高了发电系统抗扰能力,实现稳定可靠运行。基于上述理论方法和关键技术,研制了多能互补CCHP系统一体化设计软件平台、智慧能源控制器、智慧能源云平台,开发了多能流协同实时仿真系统,并实施了技术示范应用。发表SCI/EI论文82篇;申请/授权国家发明专利37件、国际专利5件;培养杰青1人、IEEE Fellow 1人、四青5人;获国家科技进步二等奖、何梁何利基金科学与技术进步奖、光华工程科技奖各1项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
硬件木马:关键问题研究进展及新动向
拥堵路网交通流均衡分配模型
基于多模态信息特征融合的犯罪预测算法研究
卫生系统韧性研究概况及其展望
夏热冬冷地区多能源互补的冷热沼气联供系统性能研究
可再生能源分布式冷热电联供系统优化设计与协同控制
多能源互补分布式供能系统的集成优化与协同控制研究
基于PEMFC的微型冷热电联供系统集成分析与多目标优化研究