The development of electric vehicle is an effective and strategic measure to deal with the worldwide energy and enviromental crisis. As a kind of electric vehicle with the most broad industry prospect, hybrid electric vehicle (HEV) will become one of the main future orientation of vehicle industry. HEV is a class of highly nonlinear and strong coupling hybrid dynamical system consisting of interacting continuous-time and discrete-event dynamics. The optimization of HEV can be concluded as a class of constrained nonlinear optimization problem with multiple objectives, which is difficult to be solved by using traditional control approach. Therefore, it is very urgent to establish new theory and methods to resolve it. Starting with the nature of multi-modes switching, many key problems will be studied here. For example, the mix-bandwith hybrid switching system model of HEV will be constructed, and the system stability will be analyzed. The dynamical oscillation property and the switching transient behavior will be analyzed, and the problem of complete vehicle frequency planning will be studied. The smooth mode transition of HEV will be achieved based on preemptive control. Then, energy management strategy of HEV considering active drivability and NVH optimization will be developed. Finally, the effectiveness of the new theory and approaches will be illustrated on experimental platform. This proposal is the frontier research involved in nulti-disciplines of electrical engineering technology, vehicle engineering, control theory and engineering and so on. This research not only makes great sense for overcoming the key bottleneck in the industrialization process of electic vehicle, but also significantly promotes the development of theory and application of certain related subjects.
发展电动汽车是解决当今世界能源和环境危机行之有效的重大举措。混合动力汽车(HEV)最具产业化前景,必将是汽车工业发展的主流方向之一。HEV是一类典型的连续和离散动态并存且交互作用的高度非线性、强耦合混杂动态系统,其优化控制可归结为一类有约束的非线性多目标优化问题,常规控制方法难以解决,亟待寻求新理论和新方法予以突破。本项目拟从探究HEV多工作模式切换本质入手,基于混杂切换系统理论分别研究HEV多频段混杂切换系统建模及稳定性问题、HEV动态系统振荡特性及切换瞬态过程分析与整车频率规划、基于超前控制的HEV工作模式平滑切换、计及驾驶性与NVH主动优化的HEV动力总成系统控制和管理策略开发等问题,并搭建试验平台验证新理论方法的有效性。本项目属电工技术、车辆工程和控制科学等多学科交叉的前沿研究,不仅对突破HEV产业化进程关键瓶颈具有重要意义,而且对相关学科的理论和应用研究有显著促进作用。
混合动力电动汽车(HEV)动力总成系统优化控制问题是影响车辆性能的关键瓶颈之一,传统优化控制方法大多仅考虑燃油经济性和排放性能,忽略了影响车辆动力性和安全性的驾驶性及NVH等高频动态性能,从而导致驾驶性恶化,严重制约了HEV的产业化进程。本课题从HEV多模式切换本质入手,将HEV动力总成系统优化控制问题纳入混杂切换系统理论体系,兼顾影响燃油经济性和排放性能的静态行为,以及影响驾驶性和车辆NVH的动态行为,寻求全局最优能量管理与控制策略。课题组的主要成果包括:(1)在混杂切换系统理论框架下,建立了HEV驱动系统的非线性多平衡点切换奇异系统模型,定义了相应的状态迁移集合与状态迁移成本,为研究HEV多工作模式切换稳定性分析奠定了基础。(2)提出了几类基于改进停留时间方法的非线性切换系统输入/输出和输入/状态稳定性分析方法,并基于广义Hamilton理论设计了非线性切换系统鲁棒反馈控制器,为发展和完善切换系统理论做出了贡献。(3)建立了HEV动力总成系统声固耦合模型,基于微分方程振荡理论研究了几类高阶非线性中性动态方程、高阶非线性时滞微分方程的振荡行为和渐近特性,得到了几类高阶非线性动态方程稳定性分析比较原理新结果,从而为研究HEV动力总成系统NVH问题铺平了道路。(4)针对HEV运行环境复杂、工况多变造成的驱动系统参数变化和负载扰动问题,提出了基于自适应反步控制理论的HEV永磁同步电机转速跟踪控制方法和基于端口受控哈密顿系统理论的HEV永磁同步电机全速度范围镇定控制,提高了电机的转速运行范围和响应速度,有效改善了整车驾驶性和舒适性。(5)提出了一种新的结合模型预测与模型参考控制的转矩协调控制策略,与传统的基于驾驶经验的模式切换控制方法相比,有效降低了模式切换过程的噪声和冲击度,提高了模式切换的平顺性和舒适性。(6)利用径向基函数神经网络等数据驱动方法实现路况的精确预测,进而提出了基于路况信息的滚动优化能量管理策略和回馈制动策略,明显提升了整车的燃油经济性和驾驶性。搭建了HEV硬件在环综合实验平台,验证了所提出控制策略的有效性。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
硬件木马:关键问题研究进展及新动向
多服役行为下的电动汽车电动力系统NVH全局优化与控制
基于ITS和随机预演控制的HEV能量管理策略研究
计及暂态稳定约束和群特性的主动解列策略研究
我国疟疾和登革热的动力学建模及优化控制策略研究