调和分析在Bedrosian等式和非线性Fourier分解中的应用

基本信息
批准号:11101094
项目类别:青年科学基金项目
资助金额:22.00
负责人:谭立辉
学科分类:
依托单位:广东工业大学
批准年份:2011
结题年份:2014
起止时间:2012-01-01 - 2014-12-31
项目状态: 已结题
项目参与者:黄超,曾雪迎
关键词:
Hardy空间HilbertHuang变换Bedrosian等式信号分解瞬时频率
结项摘要

为了深入地理解和研究信号的内在特征,需要研究信号的不同表示形式。传统的表示方法有Fourier分解,小波分解等。1998年,美国工程院院士N.E.Huang及其合作者在算法上提出了一种新的分解模式,该方法能将复杂信号分解为一系列的本征模态函数之和。根据此算法提出的理论基础和信号分解中存在的问题,本项目将利用调和分析中的相关结论研究如下问题:(1)研究Bedrosian等式H(fg)=fHg在时域上的结构刻画,构造满足此等式的函数类;(2)研究带宽有限解析信号保持幅度不变和带宽不变的条件;(3)构造满足上述条件之一且满足瞬时频率非负的解析正交基, 探讨其与Fourier级数的联系与区别,最终实现信号的算法分解和应用。该项目属于交叉性研究课题,所得结论不仅丰富了数理科学和信息科学的理论知识,而且有应用到工程、地球物理学、医学、生物学等学科的广阔前景。

项目摘要

为了更好的理解和表示一个信号,我们通常将信号进行不同的分解,最经典的分解是Fourier分解。最近,根据解析信号与Hardy空间中的函数的联系,研究者找到了一组满足瞬时频率为正的有理解析正交基, 这组基本质上是Fourier级数的推广,被称为有理Fourier级数。 为了更好地理解这组有理解析正交基,我们研究了满足瞬时频率为正的有理Fourier级数与Fourier级数的联系与区别,具体如下:(1)我们研究了有理Fourier级数的逐点收敛性问题,得到了类似Fourier级数逐点收敛性判断的Dirichlet-Dini条件和Jordan条件;(2)我们给出了有理Fourier级数和共轭有理Fourier 级数在有界变差条件下的收敛速度估计,得到了类似于Fourier级数的Dirichlet-Jordan 定理和W. H. Young 定理的一个数量刻画. 最后, 证明了这两个定理在调和有界变差条件下也成立;(3)另外,我们也给出了有理Fourier系数的收敛阶估计。当f为周期的有界变差函数时,其有理Fourier系数的阶为O(1/n) 。类似的, 我们研究了推广的各类有界变差函数的有理Fourier系数的收敛阶级问题,比如P-有界变差,有界变差等;(4)我们证明了有理Fourie级数是L^p空间的一组Schauder基, 单位圆和实轴上被同时处理了。.此外, 利用后移和前移不变子空间, 我们给出了解析信号与共轭解析信号的乘积仍为解析信号或共轭解析信号的充要条件。作为上述结论的应用,我们考虑了当f或者g为带宽有限解析信号时,Bedrosian等式H(fg)=fHg成立的条件,也给出了带宽有限解析信号保持带宽不变的条件。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于铁路客流分配的旅客列车开行方案调整方法

基于铁路客流分配的旅客列车开行方案调整方法

DOI:
发表时间:2021
2

一种基于多层设计空间缩减策略的近似高维优化方法

一种基于多层设计空间缩减策略的近似高维优化方法

DOI:10.1051/jnwpu/20213920292
发表时间:2021
3

基于腔内级联变频的0.63μm波段多波长激光器

基于腔内级联变频的0.63μm波段多波长激光器

DOI:10.3788/CJL201946.0801003
发表时间:2019
4

基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例

基于主体视角的历史街区地方感差异研究———以北京南锣鼓巷为例

DOI:
发表时间:2019
5

具有随机多跳时变时延的多航天器协同编队姿态一致性

具有随机多跳时变时延的多航天器协同编队姿态一致性

DOI:10.7641/CTA.2018.70969
发表时间:2018

谭立辉的其他基金

相似国自然基金

1

超复解析核函数及其在自适应Fourier分解中的应用

批准号:11701105
批准年份:2017
负责人:王晋勋
学科分类:A0202
资助金额:21.00
项目类别:青年科学基金项目
2

非线性Fourier原子的时频分析与应用

批准号:11571083
批准年份:2015
负责人:谌秋辉
学科分类:A0602
资助金额:50.00
项目类别:面上项目
3

调和分析中若干算子在Morrey型空间中的加权模不等式

批准号:11226104
批准年份:2012
负责人:喻晓
学科分类:A0205
资助金额:4.00
项目类别:数学天元基金项目
4

现代调和分析及其在PDE和信息科学中的应用

批准号:11271050
批准年份:2012
负责人:谌稳固
学科分类:A0205
资助金额:60.00
项目类别:面上项目