奇摄动变分问题的理论与应用

基本信息
批准号:19971077
项目类别:面上项目
资助金额:12.00
负责人:潘兴斌
学科分类:
依托单位:浙江大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:吴彪
关键词:
超导变分学非线性偏微分方程
结项摘要

The main purpose of this project (conducted by Pan Xingbin) is to study the concentration phenomena of the Ginzburg-Landau equations with a large parameter, to examine the surface nucleation of superconductivity, and to explore the effect of the geometry of a superconductor on its surface superconductivity. The results.obtained in this project are presented in 9 papars in international journals, and 12 invited talks given at international conferences/workshops. We obtained an estimate of the third critical field for cylindrical superconductors, and proved that, as the applied magnetic field decreases from the third critical field, superconductivity nucleates first at the surface of the cylinder where the curvature is maximal; and also gave a mathematical theory to describe the surface superconducting state. For.bounded 3 dimensional superconductors with smooth surface, we showed that.superconductivity nucleates first at the surface where the applied field is tangential. We also showed that the value of the third critical field is higher for a superconductor with edges and conners. Our research indicates that the geometry of domains has.important effects on the behavior of solutions of partial differential equations. Some other problems related to the vortex nucleation of superconductivity and the phase.transitions of liquid crystals have also been investigated in the project..The other topic of this project (conducted by Fang Daoyuan) is to study the existence time of solutions of semilinear Klein-Gordon system with different speed in one space dimension for weakly decaying small Cauchy data in certain circumstances of nonlinearity, and study the nonlinear type singularities for nonlinear wave equations.

本项目以超导与液晶的数学理论为中心,研究各种奇摄动变分问题和偏微分方程,及解的各种奇异性态和凝聚现象。重点研究超导材料在外场中的性态,表面成核现象,磁通涡旋的分布和运动规律,几何性质对超电性的影响。研究液晶的奇性、相变过程及边界层现象。在这些研究的基础上发展奇摄动变分问题和非线性凝聚现象的数学理论,并应用于其它学科。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

论大数据环境对情报学发展的影响

论大数据环境对情报学发展的影响

DOI:
发表时间:2017
3

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
4

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020
5

氯盐环境下钢筋混凝土梁的黏结试验研究

氯盐环境下钢筋混凝土梁的黏结试验研究

DOI:10.3969/j.issn.1001-8360.2019.08.011
发表时间:2019

潘兴斌的其他基金

批准号:18800406
批准年份:1988
资助金额:0.70
项目类别:青年科学基金项目
批准号:11171111
批准年份:2011
资助金额:50.00
项目类别:面上项目
批准号:10871071
批准年份:2008
资助金额:24.00
项目类别:面上项目
批准号:10471125
批准年份:2004
资助金额:14.00
项目类别:面上项目
批准号:19241007
批准年份:1992
资助金额:0.80
项目类别:专项基金项目
批准号:11671143
批准年份:2016
资助金额:45.00
项目类别:面上项目

相似国自然基金

1

奇摄动理论中的若干问题

批准号:19371036
批准年份:1993
负责人:周钦德
学科分类:A0303
资助金额:2.20
项目类别:面上项目
2

奇摄动理论

批准号:18971037
批准年份:1989
负责人:周钦德
学科分类:A0303
资助金额:1.00
项目类别:面上项目
3

奇摄动问题中的理论及方法

批准号:10671070
批准年份:2006
负责人:倪明康
学科分类:A0301
资助金额:15.00
项目类别:面上项目
4

非线性变分问题理论和应用

批准号:11771324
批准年份:2017
负责人:王志强
学科分类:A0206
资助金额:48.00
项目类别:面上项目