It's well-known that the capacity of blood carrying oxygen has been one of the main points in physiological research. The estimate for hemoglobin carrying oxygen is based on analysis of oxyhemoglobin dissociation curve to describe the relation between the blood oxygen saturation and oxygen partition pressure; sequentially the function of Hemoglobin association with oxygen is represented. The oxyhemoglobin dissociation curve is thermodynamical function which reflects blood carrying capacity while oxygen is sufficiently saturated in blood. The Hb affinity for oxygen is presented as P50, the oxygen partition pressure of blood oxygen saturation reaching 50%. As a thermodynamical parameter, P50 can be used to compare the difference of blood carrying oxygen in different physiological or pathological situation and has been widely applied in basic research and clinical inspection. For example, there are obvious distinctions of P50 among different species animal bloods; human blood P50 would been varied in different altitude environment, or in different ischemia trauma condition; in research on different types of blood substitutes, P50 has been the marker functional index. .However the present analysis of blood carrying capacity are mostly based on thermodynamics theory, there have no few been studies on timeliness research or kinetics of blood carrying-releasing oxygen. So there will be some lacks in physiological and pathological researches and application; for example there has been an occurrence probability of high altitude ischemia among human-being; in trauma or shock clinical treatment P50 could not be used as a betimes index to quickly reflect the patient's ischemia extent; It was also found that the lower P50 does not mean a good function in blood substitute can releasing oxygen..The aim of this project is to study the Kinetics of RBC carrying-releasing Oxygen and analysis system based on physiology and physical chemistry. The research plans are as following schedules:.1..To set up The three gases(O2, N2 and CO2) adjusting kinetics system for investigating the function curve of oxygen saturation and carrying-releasing O2 time at a constant oxygen partition pressure. Bring forward a new parameter T50 to estimate velocity of blood carrying-releasing oxygen.2..To research how to adjust Hb molecular conformation from Relax state to Tension state with RBC membrane protein Band 3, the anion ion channel protein..3..To investigate the wistar rat blood kinetics of RBC carrying-releasing oxygen in a stimulant different altitude environment, or in different ischemia trauma condition .This research will provide a new kinetic analysis method and system for blood physiology, the results of this project can be used in high altitude medincine, trauma shock clinical medicine and blood substitute.
本课题基于生理学和物理化学理论,进行血液携氧-释氧动力学研究。拟建立模拟不同氧分压可调控的三气(O2、N2、CO2)动力学实验系统,研究血液氧饱和度与氧交换的时间曲线;既要分析红细胞Hb与O2结合速率,也要研究HbO2释放O2的快慢,提出携氧-释氧动力学参数T50:特定氧分压下血氧饱和度达到50%时的充氧-放氧时间;研究红细胞膜阴离子通道蛋白等调控Hb分子松弛态(R)与紧张态(T)的动态构象,影响携氧-释氧动力学变化的分子机理。探讨红细胞携氧-释氧动力学的生理和病理学意义,为红细胞携氧释氧生理学提供新的分析系统方法和指标T50,即时反映血液携氧-释氧的生理病理状况:高原反应、失血休克型病员显现的Hb氧合能力的时效差异;为提高急救存活率,临床实践中参考T50安排抢救顺序,为高原病发生的可能性提供预警信息;该系统装置可分析CO2替换并释放O2的效能,为人工血液的研究探索提供新的研究评价方法。
本课题基于生理学和物理化学理论,进行血液携氧-释氧动力学研究。我们建立了模拟不同氧分压可调控的三气(O2、N2、CO2)动力学实验系统,研究血液氧饱和度与氧交换的时间曲线;既分析红细胞Hb与O2结合速率,也研究HbO2释放O2的快慢,提出携氧-释氧动力学参数T50:特定氧分压下血氧饱和度达到50%时的充氧-放氧时间;研究红细胞膜阴离子通道蛋白等调控Hb分子松弛态(R)与紧张态(T)的动态构象,影响携氧-释氧动力学变化的分子机理。探讨红细胞携氧-释氧动力学的生理和病理学意义,为红细胞携氧释氧生理学提供新的分析系统方法和指标T50,即时反映血液携氧-释氧的生理病理状况:高原反应、失血休克型病员显现的Hb氧合能力的时效差异;为提高急救存活率,临床实践中参考T50安排抢救顺序,为高原病发生的可能性提供预警信息;该系统装置可分析CO2替换并释放O2的效能,为人工血液的研究探索提供新的研究评价方法。
{{i.achievement_title}}
数据更新时间:2023-05-31
敏感性水利工程社会稳定风险演化SD模型
三级硅基填料的构筑及其对牙科复合树脂性能的影响
煤/生物质流态化富氧燃烧的CO_2富集特性
人β防御素3体内抑制耐甲氧西林葡萄球菌 内植物生物膜感染的机制研究
耗散粒子动力学中固壁模型对纳米颗粒 吸附模拟的影响
高效携氧人工红细胞的构建及其机制的研究
聚乙二醇修饰的金纳米颗粒影响血红蛋白携释氧功能及调节红细胞糖代谢的机制研究
近极限尺寸纳米结构的表面增强拉曼效应及其对红细胞携放氧能力的高通量检测
高效储氧-释氧变价态复合催化有机物降解电极研究