As a major technological “bottleneck”, the in-situ simultaneous acquisition of pressure or vibration parameter at ultrahigh temperature (1000℃~1500℃) in the confined space (including micro volume, high-speed rotating components and closed space) hinders the manufacturing of large-scale aeronautic and astronautic equipment and the improvement of their performance.A in-situ synchronization measurement new method is proposed for pressure and vibration parameter measurement in ultrahigh temperature environment, which the high temperature mechanical properties of the HTCC materials and the radio frequency LC wireless extraction method for more parameters. By adopting HTCC material for sensor fabrication, it broadens the operating temperature range of the sensor; Monolithic integration of pressure and vibration sensitive element can be used to deal with the micro volume of composite parameter and synchronizing measurement at low cost so as to realize in-situ synchronizing measurement for pressure and vibration parameter at ultrahigh temperature in the confined space. The mechanical properties of HTCC material in high temperature environment and the magnetic coupling method crosstalk among multi-inductor are achieved through intensive study of high-temperature kinetics characteristics of HTCC material and wireless decoupling method of various characteristic parameters. By solving the problems of cofiring thermal matching between metals and ceramics and fabrication of sensitive cavity-chamber structure in high temperature environments, a set of effective technology of sensors formed with three dimensions are established on the basis of HTCC technology. Eventually, a composite HTCC pressure and vibration micro-sensor will be developed, which will provide a basic principles and theoretical framework for other types of parameter testing at high temperature in the confined space.
超高温(1000℃~1500℃)受限空间中(狭小体积、高旋部件、密闭空间等),压力/振动参量的原位同步获取是制约航空、航天等领域大型装备制造及性能提升的重大技术“瓶颈”。本项目提出一种利用HTCC材料高温力学特性,结合多参量射频LC无线提取方法,实现超高温受限空间中多种力学参数原位同步传感测试新方法。采用HTCC材料实现传感器制备,拓宽传感器工作温度范围;压力/振动敏感单元单片集成,解决复合参数微体积、低成本同步测量问题。深入研究高温条件下HTCC材料力学参数变化规律及多电感之间磁耦合串扰影响机制,获得HTCC材料高温动力学特性及多种特征参量的无线提取解耦方法。通过解决高温下金属与陶瓷共烧热匹配及敏感腔室结构制造问题,形成一套基于HTCC技术的传感器三维结构制造工艺方法,实现HTCC超高温压力/振动复合微传感器制备,为超高温受限空间中其他多类参数测试提供基本思路和理论模型。
超高温受限空间中(狭小体积、高旋部件、密闭空间等),压力/振动参量的原位同步获取是制约航空、航天等领域大型装备制造及性能提升的重大技术“瓶颈”。本项目提出了一种利用HTCC材料高温力学特性,结合多参量射频LC无线提取方法,实现了超高温受限空间中多种力学参数原位同步传感测试。探明了超高温环境中HTCC材料的力学特性变化规律,获取大温度范围内及梯度温度条件下HTCC微梁、膜片动力学响应特性;构建了压力/振动复合传感器的三维结构模型 ,解决了超高温环境下HTCC材料热应力匹配及腔室结构制造问题,实现压力/振动复合微传感器三维集成制造,形成一套基于HTCC技术的传感器三维结构制造工艺方法,实现了HTCC超高温压力/振动复合微传感器制备,搭建复合测试平台,通过测试传感器可实现1000度高温环境下压力/振动参数的原位测量,为超高温受限空间中压力/振动参数的原位获取奠定基础理论。项目在传感器的三维结构设计、HTCC制备工艺技术、高真空密封腔体开发等方面开展了大量研究工作,共发表了5篇学术论文,其中SCI收录4篇(第一作者),中文核心论文1篇(通信作者),申请国际专利1项,申请国家专利15项目,已获授权8项(第一发明人),协助培养博士研究生2人、硕士研究生共8人。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
基于非接触测量的超高温MEMS压力传感器基础研究
原位同步精密测量分子拉曼和红外振动光谱的新技术
微流体传感器气动压力测量机理研究
基片集成波导型微波散射式无线无源超高温温度-压力集成传感器基础研究