The exploitation of highly efficienct, low cost electrocatalysts toward electrochemical water splitting (including oxygen evolution reaction (OER) and hydrogen evolution reaction (HER)) is one of the critical issues in renewable energy storage and conversion field. This project is focused on the synthesis of ultrathin layered double hydroxides (LDHs) nanosheet materials via two strategies: “top-down” plasma assisted liquid exfoliation method and “bottom-up” electrochemical synthesis approach, respectively, which are used as catalysts toward electrochemical water splitting. The project goal is to obtain high performance 2D electrocatalysts toward OER and HER by a precise control over the thickness, atom composition and distribution, electronic structure and surface defects of the ultrathin LDH nanosheets. The general aim is to be achieved through the following approaches: (1) study on the preparation methodology of ultrathin LDH nanosheets by means of the plasma assisted liquid exfoliation method and electrosynthesis technique; (2) investigation on the geometric/electronic structure, surface chemical state and defects by employing molecular dynamics simulations, periodic density functional calculations, structure characterization and functionality evaluation; (3) exploring the relationship between the water splitting behavior and the structure of ultrathin LDHs nanosheets, revealing the catalytic active site, reaction mechanism and rate-determining step. This project will provide new strategies for the preparation of 2D ultrathin LDHs nanosheets, which can be potentially used in the field of energy storage and conversion.
电催化分解水产氢制氧作为一种高效的清洁能源途径,已引起研究者的广泛关注,其中高性能电催化剂的结构设计与制备是关键问题。本项目拟分别采用"Top-down"等离子体轰击辅助液相剥离技术和"Bottom-up"电化学导向合成方法,制备具有超薄二维片层结构的水滑石(LDHs)材料,作为电催化分解水的高效催化剂。通过调变等离子体轰击和电化学导向合成的制备参数,实现对二维超薄LDHs纳米片的结构、组成、厚度的精细调控,提出原子尺度下可控制备超薄LDHs材料的新方法。深入研究超薄LDHs纳米片表面结构、电子结构、缺陷结构对电催化活性的影响,确定催化活性中心和反应机理,揭示LDHs片层厚度、表面结构和电催化性能之间的协同作用关系。以性能为导向进一步优化材料结构,获得一类具有优异电催化分解水性能的超薄二维纳米材料。本项目工作对于发展新型能源材料提供了新的设计思路,具有重要的理论价值和实际应用前景。
电催化分解水产氢作为一种高效的清洁能源途径,已引起研究者的广泛关注,其中高性能电催化剂的结构设计与制备是关键。本项目以超薄LDHs材料的可控制备为基础,围绕超薄水滑石类材料(LDHs)纳米片阵列的制备、超薄LDHs基衍生物的合成及其(光)电催化分解水制氢性能强化等方面开展了深入系统的研究。明确了超薄LDHs纳米片片层厚度、表面结构和催化性能之间的协同作用关系。以电催化分解水性能为导向进一步优化了材料结构和组成,获得了一类具有优异电催化性能的超薄二维纳米材料,并揭示了材料在电催化水裂解中的构效关系。本项目工作为二维超薄LDHs纳米片的制备提供了新的策略,有望在绿色氢能领域中有应用。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应
基于水滑石纳米片前体制备高效电催化剂及其电催化全分解水性能研究
缺陷位可控的二维超薄水滑石衍生材料的结构设计及其二氧化碳电催化还原性能研究
缺陷位可控的单层水滑石纳米片的制备及其可见光催化分解水性能研究
基于二维超薄水滑石纳米片的LDO/碳基材料催化氧化甲硫醇研究