The theory research and numerical computation of Tuburlence is very important in the nonlinear science and industry application. This project studies the existence,the upper bound of the Hausdorff and Fractal dimemsion of the attractor and numerical methods for the N-S equations and the relative MHD equations describing the turblence. By applying the theory of the infinit.dimensional dynamic system and Inretial manifold, we design the nonlinear Galerkin method, coupling finite element and boundary element nonlinear Galerkin method and postprocessing Galerkin method which can help us to know and describe the turblence of the interior flow and exterior flow.
对湍流的认识及数值模拟能力,在非线性科学和工业应用中具有非常重要意义。本课题对非定常N-S方程内外部问题研究其奇异点集和吸引子的数学结构及一些有效算法。通过应用无穷维动力系统理论及惯性流形、区域分裂、多层算法、有限元边界元耦合算法、后处理Galerkin方法等现代算法的研究,可望对三维真实流动中湍流的机理和特性有更好的数学描述。
{{i.achievement_title}}
数据更新时间:2023-05-31
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
Integrative functional genomic analysis of intron retention in human and mouse brain with Alzheimer’s disease
N-S方程新型近似惯性流形构造及相应高效并行算法研究
建立在时滞惯性流形基础上的N-S方程高性能算法研究
非定常N-S方程全离散多层算法研究
不同粘性的N-S方程的有限元迭代算法