Currently, Ruthenium-based catalysts were prepared by a tedious post-grafting and followed reduction procedure, resulting in inhomogeneous dispersion and poor stability of active species. To overcome these drawbacks,in our preliminary study, composition-controlled Ru-Ni bimetallics homogeneously dispersed onto ordered mesoporous carbon materials were insitu prepared as hydrogenation catalysts via multi-component assembly and followed direct carbonization,combined with Ru-Ni content tunability and alkaline treatment. Some merits, such as superior mass transfer, strong metal-metal and metal-support interaction, derive from their ordered 3D intercrossed channels,tunable Ru-Ni composition, and strong interaction between active species and support, thus leading to extraordinary catalytic properties. Whereas,the relationship between catalyst formation mechanism, structural characteristics and hydrogenation properties is not clear. Thus, in this programme, we focus on the the relationship between catalytic performances and Ru-Ni composition along with carbonaceous support structure. The insitu formation mechanism of catalyst, and the inherent relation between support structure,active site structure and catalytic performance would be revealed to elucidate the role of support channels, electronic structure on catalytic properties. Hopefully, highly qualified original research contributions would be obtained.
针对现有先负载后还原方法制备Ru基催化剂工艺繁杂、活性位分散不均及稳定性差等不足,在本项目前期工作中,我们采用多组分组装及直接碳化法,并辅以Ru、Ni含量调变及碱溶处理,在国际上首次制备了分散均匀、成分可控、原位自生的Ru-Ni双金属基有序介孔碳催化剂。初步检测结果表明,该催化剂载体具有规则三维交叉孔道、活性位Ru、Ni组分含量可调、活性位与载体结合强度高,使该催化剂具有传质性能好、金属-金属及金属-载体相互作用强等优点,从而表现出非凡的高效催化加氢性能。目前,该催化剂的形成机制、结构特征及催化加氢性能之间的内在联系尚不清楚,本项目拟搞清催化加氢性能与载体孔道结构、活性位化学成分之间的关系,揭示催化剂原位形成机制及载体结构、活性位结构与催化性能的内在联系,阐明载体孔道结构、活性位电子结构对催化性能的影响规律与机制,可望获得高质量原创性研究成果。
本项目针对针对现有先负载后还原方法制备Ru基催化剂工艺繁杂、活性位分散不均及稳定性差等不足,采用多组分组装及直接碳化法,并辅以Ru、Ni含量调变及碱溶处理,在国际上制备了分散均匀、成分可控、原位自生的Ru-Ni双金属基有序介孔碳催化剂。研究表明:催化剂载体具有规则三维交叉孔道、活性位Ru、Ni组分含量可调、活性位与载体结合强度高,使该催化剂具有传质性能好、金属-金属及金属-载体相互作用强等优点,因而表现出非凡的高效催化加氢性能。通过本项目的实施,已经搞清催化剂的形成机制、结构特征及催化加氢性能之间的内在联系。已经揭示催化加氢性能与载体孔道结构、活性位化学成分之间的关系,揭示催化剂原位形成机制及载体结构、活性位结构与催化性能的内在联系,阐明了载体孔道结构、活性位电子结构对催化性能的影响规律与机制。这些高质量原创性研究成果为高性能、低成本双金属碳催化剂的设计提供了理论指导。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
论大数据环境对情报学发展的影响
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
农超对接模式中利益分配问题研究
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
介孔碳负载的钴基催化剂设计及其费托反应性能的研究
介孔碳-氧化物负载金属催化剂的合成及生物油加氢性能
新型低碳烷烃脱氢介孔碳非金属催化剂的设计合成及性能研究
有序介孔限域镍基高效甲烷化催化剂的构建及催化性能研究