High precision and efficiency are the most important goals in the development of advanced manufacturing equipment. Parallel kinematic machines are a kind of new machine tools with excellent dynamic property, while its accuracy is difficult to be improved. Instead of improving the properties of the mechanism and control system, we propose a novel method to introduce smart structures in the limbs of parallel kinematic machines to improve their kinematic and dynamic accuracy. Therefore, we investigate the design methodology and accuracy improvement technology of a parallel kinematic machine based on smart structure. Screw theory, atlas method, topological approach, and intelligent optimization algorithm will be utilized to investigate the configuration synthesis, structure design, and geometrical parameter optimization of the smart structure for obtaining high accuracy of the parallel kinematic machine. Then the design methodology of a parallel kinematic machine based on smart structure is studied and a prototype is developed. Finally, the kinematic calibration method and dynamic control algorithm based on the redundant sensors and actuators of the smart structure are investigated. They will be applied in the calibration of the nonlinear geometrical errors, suppression of the links’ deformation and vibration, and compensation of the drive system control errors. This method will improve the kinematic and dynamic accuracy of the parallel kinematic machine totally..The achievements of this project will not only provide the theoretical basis and technology approach in the application and industrialization of parallel kinematic machine, but also play an important role in the improvement of high-end manufacturing equipment in our country.
本项目针对并联机器在实用化过程中亟需解决的精度保证问题,提出了采用更加智能化的运动支链提升并联机器的静动态运行精度的思路,为此深入开展基于智能结构的高精度并联机器设计方法及精度保证技术研究。采用旋量理论、图谱法、多工况拓扑算法以及智能优化算法,研究面向并联机器精度保证的智能结构部件的构型设计、结构设计和尺寸优化研究;在此基础上,研究基于智能结构的高精度并联机器的设计方法,并开发一台具有自主知识产权的具有智能结构支链的并联机器样机;基于此样机开展基于智能结构冗余传感器信息及冗余驱动器下的并联机器运动学标定及动力学控制算法研究,解决非线性结构误差项的精确辨识、部件变形振动抑制和驱动系统运动控制误差补偿等问题,从而整体上提升并联机器静动态运行精度。本项目的研究不仅为并联机器的实用化和产业化提供理论基础和技术保障,对提升我国高端制造装备的整体应用水平也将起着积极的推动作用。
该项目针对并联机器实用化过程中亟需解决的精度保证问题,提出了在并联机器关键运动部件中引入智能结构的研究思路,开展了智能结构部件的构型设计、结构设计和尺寸优化研究,开发了性能优异的智能结构部件;以此为基础,开展基于智能结构冗余传感信息的并联机器运动学标定及运动控制方法研究,解决了非线性结构误差项的精确辨识、驱动系统运动控制误差和部件变形振动抑制,从整体上提升并联机器静动态运行精度。最后,研发一台具有智能结构支链的并联机器实验样机,完成了静动态精度补偿实验研究。. 该项目较好地完成了既定的研究目标,一共发表SCI论文8篇,申请国家发明专利5项,在未来的超精密运动控制领域具有较好的应用前景。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
坚果破壳取仁与包装生产线控制系统设计
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
高速并联机器人动态精度控制方法研究
开放式超冗余仿生象鼻机器人设计方法与性能保证技术
智能质量保证技术
并联机床精度设计与运动学标定技术基础