Since the first parallel kinematic machine was used as a kind of new machine tool, its some basic theories have been intensively studied in the recent 20 years. Now the main research interests in this field have been focused on some practical key technologies to achieve its abroad application in factory environment. To get a better workspace and to reduce singular configurations, redundant parallel kinematic machines have been widely studied in recent ten years, but motion precision of such kind of machines has been a serious drawback which restricts their extensive application in real industry environment. This program will use redundant sensors as a kind of measurement tools to improve the motion precision of parallel kinematic machines with actuation redundancy. To get better static and dynamic precision performance, the program will use some advanced control methods, including nonlinear system identification, dynamic precision analysis and neural network, and make use of some measurement information of redundant sensors to investigate kinematic and dynamic calibration, real-time compensation of joint deformation, internal force optimization of joints, and real-time control method and strategy. The object of this program is to obtain high precision motion of redundant parallel kinematic machines, and further push them to possess the ability of machining and manipulation with high performance. Many theories and methods, which will be studied and used in this program, are entirely original, and they will be very beneficial and practicable to improve manufacturing level of our nation.
经过二十年的发展,并联机器的研究热点已经转移到各种关键性实用技术的研究和攻关,以期能够实现机器在更大范围内的实用化和产业化。本项目针对冗余并联机器目前最迫切解决的关键问题-运动精度,通过引入冗余传感器的方法,对驱动冗余并联机器的精度保障的理论和方法进行研究。将以提高机器的机械系统的静态与动态精度的各项指标(例如运动学精度、动态稳定性、瞬时响应速度和稳态响应速度等)为目标,运用非线性系统辨识方法、动态精度分析法、神经网络等先进控制算法,利用冗余传感器信息,研究驱动冗余并联机器的运动学和动力学标定、关节形变误差的实时补偿、支链内力优化、以及实时控制的算法和策略,最终实现机器的高精度运动,使其具有高性能的加工和操作能力。本项目研究将填补国内外相应领域的理论和技术的研究空白,对提升我国装备制造业的整体水平具有积极意义。
本项目围绕着并联机器在实用化和产业化过程中所遇到的精度保证问题,系统性地研究了基于冗余传感器信息的并联机器运动学参数建模及辨识问题,通过考虑运动部件的变形,有效地解决了冗余并联机器的误差建模及辨识问题;为了深入研究并联机器的机械变形、振动对终端动态精度的影响,开展了并联机器动态误差建模的研究,并通过引入驱动冗余和运动冗余支链,结合冗余传感器信息,提出了冗余驱动力的合理优化控制方法减小机械部件变形所产生的轨迹跟踪误差;针对现有冗余驱动结构的复杂性,及所需力位混合控制实现困难的问题,创新性地提出了以微动驱动器及传感器构建新型冗余驱动单元,实现对并联机器关键部件状态的实时监测及主动控制,为此开展了基于柔性铰链机构的新型冗余驱动单元设计及开发,融合新型冗余驱动单元的并联机器设计及精度保证技术研究,最终研发出具有微米级定位精度及轨迹轮廓精度的高性能并联机器。本项目的研究填补了国内外在新型冗余并联机器理论研究及技术实现上的空白,对提升我国装备制造业的整体水平具有积极的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
路基土水分传感器室内标定方法与影响因素分析
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于SSVEP 直接脑控机器人方向和速度研究
内点最大化与冗余点控制的小型无人机遥感图像配准
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
冗余驱动并联机器人多学科设计与性能控制技术
冗余并联机器的机理、控制及实验研究
冗余驱动并联机器人的协调控制与动力学性能优化研究
冗余驱动多操作模式并联机器人机构设计方法研究