Design and development of high efficiency catalysts for volatile organic compounds (VOCs) catalytic combustion at low temperature has strong link to air pollution control. The development of efficient catalysts for VOCs catalytic combustion at low temperature greatly depends on the understanding of the catalytic mechanism of VOCs on surface of catalysts as well as the fundamental structure-activity relationship between VOCs and catalysts. This project aims to in situ investigate and build up the fundamental structure-activity relationship for catalysts in toluene catalytic combustion via constructing a planet-satellite structure between shell isolated nanoparticles (SHINs) and Pt based nanocatalyst and make use of the properties including low detectable wavenumber region, high sensitivity, good universal applicability of the shell isolated nanoparticle enhanced Raman spectroscopy (SHINERS). Based on the works of nanocatalysis have been done in our group, the catalyst composition, size and structure and electronic state can be adjusted and controlled. Upon these, using the SHINERS, in situ characterizations the relationship between adsorbed species on catalyst surface (particularly oxygen species and hydroxyl groups those are difficult to examined using in situ FTIR) and change of reactive intermediates with catalyst composition, size and structure and electronic state. On these basis, the reaction procedure and mechanism for the toluene catalytic combustion will be systematically investigated. These studies could provide scientific guidance for the design of high efficiency catalysts working at low temperature. It will also be attempt to extend the obtained results to other VOCs catalytic combustion.
挥发性有机物(VOCs)低温高效催化燃烧催化剂的设计与开发关系大气污染的治理。低温高效催化剂的开发极大地依赖于对VOCs在催化剂表面上催化机理及构效关系本质的科学认识。本项目拟通过构建由壳层隔绝纳米粒子(SHINs)与Pt基纳米催化剂组成的行星-卫星式结构,结合壳层隔绝纳米粒子增强拉曼光谱(SHINERS),原位研究铂基纳米催化剂在甲苯催化燃烧过程中构效关系。通过对催化剂组成、尺寸与结构以及电子状态可控调变,利用SHINERS光谱,原位研究催化剂表面吸附物种(特别是氧物种、羟基等原位红外难以研究的物种)与活性中间体随催化剂组成、尺寸与结构以及电子状态改变的规律,揭示其中的科学本质。在此基础之上,系统地研究典型催化剂上甲苯催化燃烧反应过程,推测反应机理,为低温高效催化剂的设计提供科学指导,并尝试将所得到的理论与催化剂应用到类似的VOCs的催化燃烧中。
挥发性有机物催化燃烧是解决大气污染的重要途径之一。然而,目前对挥发性有机物催化燃烧反应机理与构效关系仍缺乏深入认识,显著制约了低温高效催化剂的理性设计与开发。本项目通过发展Pt基纳米催化剂的可控合成技术,结合催化剂结构表征,系统研究了二元、三元Pt基合金、核壳纳米催化剂组成、结构、尺寸等因素对甲苯催化燃烧的影响,显著提升了Pt基催化剂甲苯催化燃烧性能。同时,针对拉曼光谱灵敏度低、难以原位表征催化反应表面物种的瓶颈,通过构建由壳层隔绝纳米粒子与Pt基纳米催化剂组成的卫星式结构,有效放大催化剂表面物种拉曼信号,实现了催化反应过程的原位拉曼光谱研究。在此基础上,进一步借助原位红外光谱等谱学方法,系统研究了甲苯催化燃烧反应机理与构效关系,为高效甲苯催化燃烧催化剂的制备提供了理论依据。在本项目的资助下,共发表论文23篇,包括Nature Commun.、Chem、Acc. Chem. Res.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、ACS Catal.(2篇)、Nano Energy、J. Mater. Chem. A、ACS Mater. Lett.、Chem. Commun.、Cell Rep. Phys. Sci.、J. Catal.、J. Energy Chem.等,其中影响因子大于10的9篇。授权发明专利1项,申请发明专利4项。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
特斯拉涡轮机运行性能研究综述
低轨卫星通信信道分配策略
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
空气电晕放电发展过程的特征发射光谱分析与放电识别
N掺杂石墨烯/铂基纳米催化材料的设计合成及构效关系研究
Cu基模型催化剂界面性能与小分子活化之间的构效关系原位研究
用于水中芳基氯偶联反应的钯纳米催化剂构效关系
燃料电池用掺杂型非铂催化剂制备及其构效关系研究