Quantum optomechanics is an emerging multi-discipline including nanofabrication technology, nanomechanics and nanophotonics. Macroscopic nano-optomechanical resonators consisting of billions of atoms can be exploited not only for testing the basic assumptions of quantum mechanics and porcessing quantum information in fundamental physics but also for making various ultra-senstive sensors in terms of device applications. In this proposal, we are going to focus on (1) the design and optimizations of the new generation of GaAs optomechanical nanomembranes (2) the development of the fabrication technology for the new generation of GaAs optomechanical nanomembranes (3) the realization of GaAs optomechanical crystals based on the nanomembrane structures (4) characterizations of the mechanical quality factors for optomechanical nanomembranes. This project is aiming at investigating the physical mechanisms which limiting the mechanical quality factors of the GaAs optomechanical nanommenbranes, exploring the applications of advanced naonfabrication technology for the fabrications of GaAs optomechanical nanomembranes and finally realizing GaAs optomechanical crystals and the new generation of GaAs optomechanial naonmembranes with ultra-high mechanical quality factors. With the possibility of further integrating naonscale quantum emitters inside, GaAs nanomembranes and optomechanical crystals can form hybird quantum systems serving as platforms for the realizations of quantum information processing and novel quantum-optomechanical phenomena.
量子光机械学是近年来发展起来的一门融合了纳米加工技术,微机械学和纳米光子学的综合性交叉学科。由数亿个原子组成的宏观纳米机械振子,在基础研究领域中能够被用来测试量子力学的基本假设和实现量子信息处理,在器件应用层面上可以用来制作各种超高灵敏度传感器。本项目拟开展(1)新一代砷化镓光机械纳米薄膜的设计与优化(2)新一代的砷化镓光机械薄膜制备工艺的发展(3)基于新一代砷化镓薄膜的光机械晶体的制备(4)光机械薄机械膜品质因子的表征。力争弄清限制砷化镓光机械薄膜品质因子的物理因素,探索先进纳米微加工技术在砷化镓光机械薄膜制备上的应用,制备出新一代具有超高机械品质因子的有源光机械纳米薄膜和光机械晶体,为今后进一步集成半导体纳米光源,形成混合光机械量子系统进而实现各种新颖的量子现象和量子信息处理提供强有力的研究平台。
本项目主要是使用基本半导体的薄膜型纳米结构,增强光与物质相互作用,实现新型量子光学研究平台。基于此,我们设计并制备高品光学微盘,光机械晶体,并对其光学性质,机械学性质和光机械耦合性能进行了表征。为了进一步实现量子点-光机械混合系统,我们是发展出一套针对半导体薄膜结构的量子点精确光学定位技术。最后,通过芯片键合技术,我们实现了III-V半导体薄膜和硅基低损光子回路的混合量子芯片。本项目基本完成了研究计划,相关成果现已在Nature Nanotechnology, review of scientific instruments等高水平期刊审稿中。后续工作将专注于在同一芯片上集成不同多种光量子信息处理元器件,比如,光子,机械振子,超导探测器等,为多功能量子信息处理芯片打下基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
面向云工作流安全的任务调度方法
天津市农民工职业性肌肉骨骼疾患的患病及影响因素分析
掺Ce磁光薄膜制备及其磁光特性研究
双绒面ZnO:Al薄膜的制备及其陷光特性研究
紫外光发射硅衬底氧化锌薄膜的制备及其特性研究
TiO2-xNx/Ni(OH)2纳米复合薄膜的制备及可光充电特性