非线性椭圆和抛物型变分不等式的最优控制

基本信息
批准号:11901122
项目类别:青年科学基金项目
资助金额:25.00
负责人:彭自嘉
学科分类:
依托单位:广西民族大学
批准年份:2019
结题年份:2022
起止时间:2020-01-01 - 2022-12-31
项目状态: 已结题
项目参与者:
关键词:
非凸和非光滑控制问题H半变分不等式变分不等式最优控制非线性椭圆与抛物方程
结项摘要

As a significant research branch of partial differential equations, variational inequality has wide applications in applied mathematics, mechanics, operational research and engineering sciences. In this project, we aim to study some optimal control problems governed by elliptic and parabolic variational inequalities. Their key features are as follows. First of all, the state systems are described by nonlinear elliptic and parabolic variational-hemivariational inequalities. Secondly, the cost functionals of the control problems are nonconvex and nonsmooth. Finally, the control variables are chosen as the source, obstacle or boundary functions. Since the state systems are governed by nonlinear inequalities and the cost functionals are nonsmooth and nonconvex, they are typical nonconvex and nonsmooth optimal control problems. By using the theories of nonsmooth analysis, variational-hemivariational inequalities, nonlinear analysis and optimal control of partial differential equations, and developing methods and techniques for noncovex and nonsmooth optimal control problems, we aim to study the existence of optimal solutions to the aforementioned optimal control problems, derive the corresponding necessary optimality conditions of first order and establish the optimality systems.

变分不等式是偏微分方程的重要研究分支,它在应用数学、力学、运筹学、经济学、工程科学中具有极其广泛的应用。本课题研究椭圆和抛物型变分不等式的若干最优控制问题,其主要特征如下:(1)受控状态系统是拟线性椭圆型和抛物型变分、H-半变分不等式;(2)目标函数为非光滑、非凸泛函;(3)控制变量为源函数、障碍函数或者边界函数。由于状态系统由非线性不等式所刻画并且罚函数非凸、非光滑,它们是典型的非凸、非光滑最优控制问题。本课题拟结合非光滑分析、变分—H-半变分不等式、非线性分析、偏微分方程的最优控制等理论,发展非凸、非光滑最优控制问题的研究方法和技术,研究上述最优控制问题最优解的存在性,推导最优解的一阶必要最优条件,建立最优系统。

项目摘要

变分不等式是偏微分方程的重要研究分支,在过去的几十年里,它被广泛应用于应用数学、运筹学、力学以及工程科学中的实际问题。本项目研究了几类椭圆和抛物型变分不等式的最优控制问题。由于受控状态系统是非线性变分、H-半变分不等式,此类问题的控制—状态映射通常不可微。本项目结合非光滑分析、非线性分析、偏微分方程的最优控制等理论,完成了课题研究内容,并取得了一些重要结果:针对拟线性椭圆变分不等式的最优控制问题,在控制变量为障碍函数本身,且目标函数是非光滑、非凸泛函的情形下,我们发展了一些非凸、非光滑问题的研究方法和技术,证明了最优控制的存在性,并推导出最优解的一阶必要最优性条件;针对更复杂的抛物型变分不等式的边界最优控制问题,通过光滑逼近和提升解的正则性,建立了控制-状态映射的Lipschitz连续性及其弱意义下方向可微性,推导出伴随状态方程和最优性条件,建立了控制问题的最优性系统。研究工作发展/推广了国内外知名专家的已有相关研究结果,促进了变分不等式最优控制理论的研究和发展。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

粗颗粒土的静止土压力系数非线性分析与计算方法

粗颗粒土的静止土压力系数非线性分析与计算方法

DOI:10.16285/j.rsm.2019.1280
发表时间:2019
2

硬件木马:关键问题研究进展及新动向

硬件木马:关键问题研究进展及新动向

DOI:
发表时间:2018
3

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

1例脊肌萎缩症伴脊柱侧凸患儿后路脊柱矫形术的麻醉护理配合

DOI:10.3870/j.issn.1001-4152.2021.10.047
发表时间:2021
4

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

主控因素对异型头弹丸半侵彻金属靶深度的影响特性研究

DOI:10.13465/j.cnki.jvs.2020.09.026
发表时间:2020
5

An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function

An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function

DOI:10.1080/15476286.2017.1377868.
发表时间:2017

彭自嘉的其他基金

批准号:11561007
批准年份:2015
资助金额:35.00
项目类别:地区科学基金项目
批准号:11426071
批准年份:2014
资助金额:3.00
项目类别:数学天元基金项目

相似国自然基金

1

非线性椭圆和非线性抛物型方程

批准号:11131005
批准年份:2011
负责人:陈化
学科分类:A0304
资助金额:230.00
项目类别:重点项目
2

非线性椭圆和非线性抛物型方程

批准号:10631020
批准年份:2006
负责人:洪家兴
学科分类:A0304
资助金额:140.00
项目类别:重点项目
3

非线性椭圆型和抛物型方程及其应用

批准号:19371010
批准年份:1993
负责人:吴兰成
学科分类:A0306
资助金额:3.80
项目类别:面上项目
4

非线性椭圆型与抛物型方程及其应用

批准号:19771003
批准年份:1997
负责人:陈亚浙
学科分类:A0306
资助金额:6.00
项目类别:面上项目