The purpose of this project is to investigate novel in-fibre integrated device(s) based on microsphere resonator(s) coupled with embedded core hollow fibre. This proposed in-fibre integrated photonic device consists of a hollow fibre cladding, one or more embedded fibre core as coupling waveguides and one or more microsphere resonators inside. When the light launches from an input singlemode fibre to the embedded core hollow fibre via a transition waveguide, the whispering gallery modes (WGMs) on the surface of microsphere resonator(s) can be excited through the evanescent fields of the embedded cores of the hollow fibre. Thanks for the ultra-high optical Q-factor of microsphere resonator itself, optical dielectric microresonators supporting WGMs represent a number of exceptional properties, such as very high power density, extremely small mode volume, very narrow spectral linewidth and a lengthy cavity ringdown. Our proposed in-fibre integrated microresonator device is able to inherit and highlight these unique properties mentioned above, along with a range of advantages, such as small size, smart footprint, low-cost, low weight, ease of fabrication & operation, good mechanical stability and immunity to external electromagnetic & airflow interference. The development of this in-fibre integrated microresonator device has significant potential to make an impact on Chinese innovation capacity in the areas of photonics research with a resulting positive impact on the Chinese economy and its competitiveness. The applications of this research project are strongly aligned with the national priority area and will develop knowledge and skills in this important research area---In-Fibre Integrated Optics, directly benefiting the reputation of China for scientific innovation and high quality science, in turn impacting positively on the attracting to China highly talented individuals and companies.
本项目拟开展基于中空多芯光纤的微球谐振腔光器件特性及其制备方法研究,这种特殊设计纤维集成光器件的结构由中空多芯光纤包层、一条或者多条悬挂纤芯和内置的微球谐振腔构成。通过单模光纤和过渡波导,当向中空多芯光纤一端输入高斯光束时,通过纤芯的倏逝场与微球谐振腔之间的光耦合,从而激发微球谐振器腔内表面的回音壁模式。这种特殊的基于中空光纤的微球谐振腔光器件继承和改善了传统微谐振腔光学器件的四大特性,即极高的光学品质因子(Q-factor)所导致的四大光学特性:高能量密度;超窄的谐振波长线宽;极小的模式体积和超长的光腔衰荡周期,加上这种纤维集成微腔谐振器件整体上具有结构微小、重量轻、成本低廉、操作灵活、机械稳定性好和抗干扰能力强等特点。因此开展这种新型纤维光学集成光器件的探索与研究,同时获得具有我国自主知识产权的纤维集成新器件,对于促进我国新型光纤光子学器件技术的发展具有十分重要的意义。
本项目开展了基于中空多芯光纤的微球谐振腔光器件特性及其制备方法研究,这种特殊设计纤维集成光器件的结构由中空多芯光纤包层、一条或者多条悬挂纤芯和内置的微球谐振腔构成。通过单模光纤和过渡波导,当向中空多芯光纤一端输入高斯光束时,通过纤芯的倏逝场与微球谐振腔之间的光耦合,从而激发微球谐振器腔内表面的回音壁模式。本项目的主要研究内容是:1) 中空多芯光纤微球谐振光器件的理论模型设计与最优化;2) 中空多芯光纤微球谐振光器件的实验制备关键技术研究;3) 中空多芯光纤与标准光纤之间的耦合连接方法研究;4) 中空多芯光纤微球谐振光器件的重要光学参数表征与其应用探索。本项目发表SCI论文45篇,申请专利8件,授权1件,光纤内集成微腔谐振器的品质因子最高达到了5.5×103,并成功将这种光纤集成器件应用于温度传感方向应用方面,对温度传感的解析度最高可以达到5.47×10-3 K-1。这种特殊的基于中空光纤的微球谐振腔光器件继承和改善了传统微谐振腔光学器件的四大特性,即极高的光学品质因子(Q-factor)所导致的四大光学特性:高能量密度;超窄的谐振波长线宽;极小的模式体积和超长的光腔衰荡周期,加上这种纤维集成微腔谐振器件整体上具有结构微小、重量轻、成本低廉、操作灵活、机械稳定性好和抗干扰能力强等特点。因此开展这种新型纤维光学集成光器件的探索与研究,同时获得具有我国自主知识产权的纤维集成无源和有源光子器件,对于促进我国新型光纤光子学器件技术的发展具有十分重要的意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
圆柏大痣小蜂雌成虫触角、下颚须及产卵器感器超微结构观察
基于图卷积网络的归纳式微博谣言检测新方法
极地微藻对极端环境的适应机制研究进展
多芯光纤中空间结构光场的多参量调控研究
基于液晶填充式熔嵌芯中空光纤电光调制器件机理研究
全介质多芯光纤纤端集成光场调控器件研究
基于多芯光纤的光镊技术及其微操纵系统研究