本项目研究Riemann-Finsler几何(简称Finsler几何)及其在信息结构上的应用。我们将以常旗曲率的Randers度量为线索,深入研究常曲率Finsler流形的构造和分类;利用曲率流和热流等分析方法,探索Finsler流形上非退化调和映射和极小子流形的存在性,微分流形上爱因斯坦Finsler度量的存在性,我们也将发展用于心理测量函数诱导的信息结构的Finsler几何方法,以分析和解决不同类型的心理学问题。本项目的研究对于解答陈省身在Finsler几何中的主要问题,对微分几何的发展有重要意义;对利用Finsler几何理论解决心理学中实际问题有重要价值。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于被动变阻尼装置高层结构风振控制效果对比分析
基于MCPF算法的列车组合定位应用研究
具有随机多跳时变时延的多航天器协同编队姿态一致性
组蛋白去乙酰化酶在变应性鼻炎鼻黏膜上皮中的表达研究
新产品脱销等待时间对顾客抱怨行为的影响:基于有调节的双中介模型
黎曼-芬斯勒几何中若干问题及其应用的研究
黎曼-芬斯勒子流形几何
2021年黎曼-芬斯勒几何及其应用专题讲习班
黎曼-芬斯勒几何中若干问题的研究