Transition-metal-catalyzed C-H activation has become an important tool to shape tranditional organic synthesis, among which the catalytic systems of late transition metals such as palladium, rhodium, ruthenium, and iridium have been well studied and made enormous progresses recently. As an early transition metal, manganese has the priorities of low cost, high abundance and enviromentally benign. So far, the study of manganese-catalyzed C-H activation in the world has just been at the early stage, which mainly focuses on the C-H activation reactions of strongly-coordinated nitrogen-containing organic substrates. Carbonyls bearing weak-coordination oxygen atoms, such as aldehydes, ketones, and esters, are essential components of a wide variety of natural products, pharmaceuticals, and functional materials. Also, they are important intermediates in organic synthesis. The α-C-H bond is one of common reactive sites of carbonyls, based on which many reactions like Mannich reaction are classical Name Reactions in many chemistry textbooks. How to prohibit the reactivity of the α-position C-H bonds and achieve the activation of inert C(sp2)-H bonds of carbonyl compounds remains as an underdeveloped issue. In this project, we aim to develop new types of manganese-based catalytic systems in order to change the traditional reactive sites of carbonyl compounds and achieve the manganese-catalyzed transformations of inert C-H bonds. Ultimately, we hope to access novel synthetic strategies and methodologies based on simple carbonyl compounds through the implementation of this project.
过渡金属催化的C-H键活化策略已经成为改变传统有机合成方式的重要手段之一。其中,后过渡金属钯、铑、钌、铱等催化体系得到了广泛研究并取得显著进展。前过渡金属锰具有价格便宜,来源丰富,环境友好等优点。目前锰催化的C-H键活化研究在国际上尚处于起步阶段,主要集中在具有强配位含氮基团芳烃的C-H活化反应。具有弱配位氧原子的羰基化合物,如醛、酮、酯等是众多天然产物、药物分子和功能材料的组成单元,同时也是有机合成的重要中间体。羰基化合物α位活泼C-H键是其传统反应位点之一,由此发生的很多反应如Mannich反应等已成为教科书上的经典人名反应。如何抑制α位活泼C-H键的反应性,实现弱配位羰基化合物的惰性C(sp2)-H键活化是拯待解决的难题。本项目拟通过开发新型的锰催化体系,改变传统的羰基化合物反应位点,实现锰催化羰基化合物的惰性C-H键活化/转化反应,发展基于简单羰基化合物的有机合成新策略、新方法。
过渡金属催化的C-H键活化策略已经成为改变传统有机合成方式的重要手段之一。其中,后过渡金属钯、铑、钌、铱等催化体系得到了广泛研究并取得显著进展。前过渡金属锰具有价格便宜,来源丰富,环境友好等优点。目前锰催化的C-H键活化研究在国际上尚处于起步阶段,主要集中在具有强配位含氮基团芳烃的C-H活化反应。具有弱配位氧原子的羰基化合物,如醛、酮、酯等是众多天然产物、药物分子和功能材料的组成单元,同时也是有机合成的重要中间体。羰基化合物α位活泼C-H键是其传统反应位点之一,由此发生的很多反应如Mannich反应等已成为教科书上的经典人名反应。如何抑制α位活泼C-H键的反应性,实现弱配位羰基化合物的惰性C(sp2)-H键活化是拯待解决的难题。本项目通过开发新型的锰催化体系,改变了传统的羰基化合物反应位点,实现了锰催化羰基化合物的惰性C-H键活化/转化反应,发展了基于简单羰基化合物的有机合成新策略、新方法。具体来说,本项目发展了首例锰催化芳酮和烯烃的氧化还原中性C-H烯基化反应、锰催化酮惰性芳香C-H键的烯丙基化反应、锰催化芳香脒与炔烃的C-H烯基化反应;实现了锰催化酮与醛的[3+2]脱氧环化反应、锰催化芳酮惰性C-H键和异氰酸酯的[3+2]环化反应等;同时,本项目通过开发锰催化的独特两面性,经由金属有机和自由基双轨机制,首次实现了锰催化的“双向”炔烃立体选择性硅氢化反应和锰催化的芳基硼酸与非活化烯烃的氢化芳基化反应等。本项目的实施推动了锰催化特别是酮芳香C-H键活化的迅速发展。
{{i.achievement_title}}
数据更新时间:2023-05-31
Influencing factors of carbon emissions in transportation industry based on CD function and LMDI decomposition model: China as an example
An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function
Engineering Leaf-Like UiO-66-SO_3H Membranes for Selective Transport of Cations
Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究
One-step prepared prussian blue/porous carbon composite derives highly efficient Fe-N-C catalyst for oxygen reduction
钯催化惰性芳烃的C-H键活化的偶联反应
铑催化苯炔参与的惰性C-H 键活化反应研究
缺电杂芳环的C-H官能化反应——惰性C-H键活化新策略研究
双核金属配合物“协同”活化惰性C-H键