Aerobic sludge-microalgae symbiotic system is not only a resource reclamation technology, but also an effective way to purify sewage. However, there are some technical bottlenecks in the process of application, such as the lower removal rate of the symbiotic system, the difficulties about development and selection of the carrier material in the immobilization process, etc. According to the research situation, this program proposes that the aerobic granular sludge can be used as biological carrier material for microalgae and then a granular immobilized system can be established which makes aerobic granular sludge and microalgae coupled. Consequently, the removal rate of the symbiotic system should be improved, the reutilization income of residual sludge should be increased, the cost of the immobilization process should be reduced and the inhibition of physicochemical impurities in the energy recovery process should be abated, etc. Based on the research objectives, we would firstly study the effect of operational conditions on the startup of the granular immobilized system, and then an optimized control strategy about system establishment is proposed based on the comprehensive analysis of different coupling phylogenetic character. Meanwhile, we would analyze the main formation mechanism of coupled granules by the characterization of physic-chemical properties and microbial community structure of mature granules. In addition, the community transformation of potential hazardous algae, the typical algal toxin content in effluent and algae toxin synthase gene content in coupled granules would be monitored to evaluate the potential ecological risks of aerobic sludge-microalgae coupled granular system to treat wastewater.
好氧污泥-微藻共生工艺处理污水既是资源化技术, 也是净化污水的有效途径。但是目前工艺应用存在悬浮式菌藻共生系统处理效率较低,及固定化过程中载体材料开发与选用较为困难等技术瓶颈。因此,针对此研究现状,本项目首创提出以好氧颗粒污泥作为微藻的生物载体材料,建立微藻与好氧活性污泥耦合颗粒固定化系统,从而达到提高共生系统的处理效率、增强剩余污泥资源化收益、降低固定化成本和能源回收过程中物化杂质抑制影响等效果。基于此研究目标,项目将首先通过控制不同的运行条件进行好氧污泥与微藻耦合颗粒化启动研究,并以不同耦合系统性状的综合分析结论为依据,提出较为优化的系统建立控制策略。之后结合耦合颗粒的物理、化学和生物性质及结构表征,分析探讨好氧污泥与微藻聚合颗粒化的主要形成机制。最后研究还将通过监测具有潜在危害的藻类在系统内生成累积、典型藻毒素含量变化及其合成酶基因表达量情况,考察此工艺处理实际废水的应用安全性。
好氧污泥-微藻共生工艺处理污水既是资源化技术, 也是净化污水的有效途径。但是目前工艺应用存在悬浮式菌藻共生系统处理效率较低,及固定化过程中载体材料开发与选用较为困难等技术瓶颈。因此,针对此研究现状,本项目首创提出以好氧颗粒污泥作为微藻的生物载体材料,建立微藻与好氧活性污泥耦合颗粒固定化系统,从而达到提高共生系统的处理效率、增强剩余污泥资源化收益、降低固定化成本和能源回收过程中物化杂质抑制影响等效果。基于此研究目标,研究首先通过控制不同的运行条件进行好氧污泥与微藻耦合颗粒化启动研究,并以不同耦合系统性状的综合分析结论为依据,提出了较为优化的系统建立控制策略。之后结合耦合颗粒的物理、化学和生物性质及结构表征,分析探讨了好氧污泥与微藻聚合颗粒化的主要形成机制。最后研究通过监测具有潜在危害的藻类在系统内生成累积及典型藻毒素含量变化情况,确定了此工艺在处理废水过程中具有良好的应用安全性。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
DeoR家族转录因子PsrB调控黏质沙雷氏菌合成灵菌红素
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
投加微粉促进好氧颗粒污泥形成和稳定的机理研究
解体好氧颗粒污泥的修复机理与过程强化研究
单段式污泥高温微好氧消化新工艺的污泥稳定化机理研究
好氧污泥颗粒化过程中胞外蛋白的作用机理研究