基于自旋玻璃理论的网络博弈纯策略纳什均衡计算和社会有效状态实现路径问题研究

基本信息
批准号:11605288
项目类别:青年科学基金项目
资助金额:20.00
负责人:孙怡帆
学科分类:
依托单位:中国人民大学
批准年份:2016
结题年份:2019
起止时间:2017-01-01 - 2019-12-31
项目状态: 已结题
项目参与者:周海军,赵金华,林君天,王磊
关键词:
优化和决策随机网络自旋玻璃演化博弈博弈论
结项摘要

Games on network have become of increasing interest in social, economic and physical disciplines in recent years. The relationship between network structure and Nash Equilibrium (NE), one of the most common used solutions to predict the strategic outcomes, is the problem of particular interest. The introduction of a network structure among agents complicates the computation of pure strategy NE. In addition, it is often the fact that the pure strategy NE do not reach the maximum possible total welfare. In fact, pure strategy NE of a network game do correspond to ground-state configurations of a spin glass model. In this proposal, we thus adapt the theory and methods of spin glass in statistical physics to study the computation of pure strategy NE and implementatiion of social efficency state in network games: completely characterize the structure of pure strategy NE space, propose a messge-passing algorithm to detect pure strategy NE; unveil the energy landscape of pure strategy NE, and design strategy evolution mechanism to drive the system to the optimum NE spontaneously; compute the social efficiency state, and propose the strategy evolution mechanism to approach the social efficiency state. The proposed research is of important social and academic significance which will provide new methods to deal with the computation of pure strategy NE in network games, and also enrich the findings in the implementatiion of social efficency state of network games.

网络博弈现已成为经济、社会、物理等诸多领域的热点问题。纳什均衡作为预测博弈结果的最常用对象之一,其如何受网络结构影响成为了关注焦点。参与人网络结构的引入使纯策略纳什均衡的计算成为了一个难题。此外,纯策略纳什均衡常常无法达到社会最大总收益。从统计物理角度看,网络博弈纯策略纳什均衡本质上是自旋玻璃模型的基态构型,为此,本项目应用统计物理自旋玻璃理论对四类网络博弈模型的纯策略纳什均衡计算和社会有效状态实现路径问题展开研究:刻画纯策略纳什均衡空间结构,建立基于消息传递的均衡求解算法;勾勒均衡的能量图景,设计驱使系统自发演化到最优均衡的策略演化规则;求解社会有效状态,提出逼近社会有效状态的策略演化规则。本项目的研究将为网络博弈纯策略纳什均衡的计算提供新的研究方法,丰富网络博弈社会有效状态实现路径的研究成果,具有重要理论意义和实践价值。

项目摘要

网络博弈现已成为经济、社会、物理等诸多领域的热点问题。纳什均衡作为预测博弈结果的最常用对象之一, 其如何受网络结构影响成为了关注焦点。参与人网络结构的引入使纯策略纳什均衡的计算成为了一个难题。此外,纯策略纳什均衡常常无法达到社会最大总收益。本项目应用统计物理自旋玻璃理论对网络博弈模型的纯策略纳什均衡计算和社会有效状态实现路径问题展开研究: 对公共品博弈问题提出了信息传递算法,去中心化的“局部一致”决策机制,并对贪心算法之一广义摘叶算法在一般网络上的效果进行了理论分析。本项目的研究将为网络博弈纯策略纳什均衡的计算提供新的研究方法,丰富网络博弈社会有效状态实现路径的研究成果,具有重要理论意义和实践价值。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

多能耦合三相不平衡主动配电网与输电网交互随机模糊潮流方法

DOI:10.13334/j.0258-8013.pcsee.190276
发表时间:2020
2

一种基于多层设计空间缩减策略的近似高维优化方法

一种基于多层设计空间缩减策略的近似高维优化方法

DOI:10.1051/jnwpu/20213920292
发表时间:2021
3

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

基于文献计量学和社会网络分析的国内高血压病中医学术团队研究

DOI:10.11842/wst.20190724002
发表时间:2020
4

药食兼用真菌蛹虫草的液体发酵培养条件优化

药食兼用真菌蛹虫草的液体发酵培养条件优化

DOI:
发表时间:2021
5

具有随机多跳时变时延的多航天器协同编队姿态一致性

具有随机多跳时变时延的多航天器协同编队姿态一致性

DOI:10.7641/CTA.2018.70969
发表时间:2018

孙怡帆的其他基金

相似国自然基金

1

微分博弈中纳什均衡的定性性质:理论与应用

批准号:71401137
批准年份:2014
负责人:凌晨
学科分类:G0103
资助金额:20.00
项目类别:青年科学基金项目
2

带有非连续型纳什均衡点的随机微分博弈问题及其应用

批准号:11701404
批准年份:2017
负责人:穆蕊
学科分类:A0601
资助金额:22.00
项目类别:青年科学基金项目
3

交通规划中的广义纳什均衡问题的理论与算法研究

批准号:11401314
批准年份:2014
负责人:徐玲玲
学科分类:A0405
资助金额:22.00
项目类别:青年科学基金项目
4

随机广义纳什均衡问题的研究及应用

批准号:11501476
批准年份:2015
负责人:李沛瑜
学科分类:A0405
资助金额:18.00
项目类别:青年科学基金项目