Carbon emission trading scheme (ETS) is an important strategic measure of China to deal with global climate change. A two-step procedure is one of the reasonable paths for allocating carbon emission allowances during the initial period of China’s nationwide ETS, under which the central government firstly decomposes the national cap on carbon emissions to the provinces and then the provincial governments further allocate their own allowances to the regulated enterprises. It is urgent, therefore, to make efforts in studying provincial carbon allowance allocation in China. Uncertainty and tradeoff among multi-objectives are two prominent problems faced by China’s provincial carbon allowance allocation. But the related researches have just started by far, which cannot satisfy the practical demands of establishing China’s national ETS and defining provincial-level emission reduction responsibilities..Based on the previous research work, the project aims to further deepen the uncertainty and multi-objective optimization research on provincial carbon allowance allocation in China. Firstly, by conducting the literature research, case study and policy background analysis, this project identifies the main sources of uncertainty to China’s provincial carbon allowance allocation and profoundly analyzes their mechanisms of action. Then on this basis, an uncertainty evaluation model of China’s provincial carbon allowance allocation is developed and applied to simulate and compare alternative allocation mechanisms, which advances certain policy suggestions for China to make its choice of provincial allocation mechanism. Finally, the Monte Carlo simulation is combined with multi-objective genetic optimization to establish a simulation-optimization model for China’s provincial carbon allowance allocation under the conditions of uncertainty. This project applies the model to provide policymakers a set of non-dominated optimal provincial allocation schemes in the form of Pareto frontier, hence offers the theoretical guide for further setting the quantitative indicator of carbon emission allowance for every province.
碳排放交易是中国应对气候变化的重要战略举措。“先由国家到省区、再由省区到企业”的配额分配程序是中国国家碳排放交易体系建设初期的合理选择之一,省区碳排放配额分配机制设计是亟需开展的研究工作。不确定性和多目标权衡是中国省区碳排放配额分配中的两个突出问题,但目前相关研究刚刚起步,尚无法满足全国碳排放交易体系建设和省区层面减排责任分解落实的现实需求。.本项目拟在课题组前期研究基础上,进一步深化中国省区碳排放配额分配的不确定性和多目标优化研究。首先,识别省区碳排放配额分配主要的不确定性来源并深入剖析其作用机理。然后构建中国省区碳排放配额分配机制不确定性比较评价模型,基于该模型的数值模拟和比较分析为我国省区配额分配的机制选择提供建议。最后将蒙特卡洛模拟与多目标遗传优化相结合,构建不确定性条件下中国省区碳排放配额分配模拟优化模型,以帕累托前沿面的形式向决策者提供一组可选分配方案,为各省区碳排放配额的量化指标设定提供理论参考。
配额分配是碳排放交易(简称碳交易)体系顺利运行的必要前提,但该机制的设计与所应用区域的经济社会发展特征密切相关。我国正处于发展方式转变和产业结构转型升级的重要转折时期,省区经济社会发展与碳排放中的不确定性因素众多且状态复杂,配额分配既要关注排放权资源初始配置的公平性,也要兼顾对经济社会环境的影响和可操作性。在此背景下,开展中国省区碳排放配额分配的不确定性和多目标优化研究具有重要理论和实践意义。.本项目主要研究内容包括:(1)识别省区碳排放配额分配主要的不确定性来源,深入剖析不确定性的作用机理;(2)构建中国省区碳排放配额分配机制不确定性比较评价模型,基于数值模拟和比较分析为配额分配的机制选择提供政策建议;(3)构建不确定性条件下中国省区碳排放配额分配模拟优化模型,基于调研和专家访谈数据厘定模型参数,结合省区碳排放数据和经济社会发展趋势开展模拟分析,为省区碳排放配额的量化指标设定提供参考。.本研究取得的重要结果包括:(1)省区经济规模、产业结构、技术进步、BAU碳排放、能源需求和价格、节能减排技术及其成本是我国省区碳排放配额分配面临的主要不确定性因素,而且上述不确定性因素之间存在复杂的相互作用关系,在不确定性数值模拟中需要考虑其关系函数。(2)核算了各省区历史碳排放,发现省区之间人均累计碳排放存在明显差距,表明省区之间的人均排放资源配置存在明显的不公平。(3)山东、河北、江苏、内蒙古、河南、广东、辽宁、山西碳排放规模最大,云南、广西、江西、甘肃、宁夏、青海、海南等省区碳排放有可能呈现快速增长,上述省区是配额分配中的重点。(4)从公平、效率、可行性多个角度制定省区碳排放配额分配机制的评价指标体系,基于省区数据开展了模拟分析。建议我国现阶段可采用相对或指数总量控制以及基准制分配机制,根据单位产品排放基准和历史产出确定省区存量排放配额,结合经济和产业发展规划设定新进入者增量配额。
{{i.achievement_title}}
数据更新时间:2023-05-31
涡度相关技术及其在陆地生态系统通量研究中的应用
农超对接模式中利益分配问题研究
拥堵路网交通流均衡分配模型
低轨卫星通信信道分配策略
中国参与全球价值链的环境效应分析
中国碳排放交易机制与碳配额分配方法研究
中国碳排放配额交易对碳减排的影响机制建模及优化策略研究
碳排放配额交易的市场机制与政策研究
基于CGE模型的中国碳排放许可初始分配方案研究