The trace amount of acetone in exhalation is an important biomarker for human blood glucose concentration, and its accurate detection is one of the most promising methods to fast and real-time monitor the diabetes in a noninvasive way. Semiconductor oxide (SMO) sensor is an important technique for fast and sensitive detection of low concentration acetone gases. However, it still has some practical bottlenecks, such as insufficient selectivity and poor moisture resistance ability, which limit its application in exhaled breath environment with complex components and high humidity background. In this project, we plan to design and synthesize an novel hybrid SMO gas sensor with high acetone targeting property and moisture resistance ability, which combining the SMO nanotubes substrates with ultrathin walls and surface modified self-assembled monolayer. Using soaking method based on electrospun sacrificed fibers to obtain ultrathin SMO nanotubes with diverse nanostructures, through adjusting their structures parameters, loading of sensitizing agents, and constructing of surface pores to improve the sensitivity of acetone. Through modifying the self-assembled monolayer on the surface of ultrathin SMO nanotubes and designing the frame structure of the self-assembled monolayer, deeply study the covalent connection combination and electron captured abilities between terminal functional groups and acetone gas, at the same time, through controlling the chain length adjustment and hydrophobic functional group grafting to obtain the hydrophobic surface modification of SMO NTs, then substantially increase the selectivity and moisture resistance ability of SMO sensors. Finally, obtaining a portable sensor for highly accurate detection of acetone gas under complex exhaled breath background, which can realize quantitative discriminate of acetone biomarkers from clinical patients. This project can provide core technologies and key devices for the application of SMO devices in the new generation of diabetes detection technology.
呼气中痕量的丙酮气体是反映人体血糖浓度的重要标志物,对其准确检测是实现糖尿病无创、快速和实时监控的理想手段。半导体氧化物(SMO)传感器是对低浓度气体进行灵敏快速检测的重要方法,但还存在选择性不足、抗湿性差等实用化瓶颈问题,限制了在呼气复杂成分和高湿度背景下的应用。本项目拟设计制备兼具丙酮靶向性和抗湿性的有机功能化超薄SMO纳米管呼气传感器,利用电纺纤维浸渍法制备超薄SMO纳米管,通过结构参数设计、增感剂搭载和表面孔道构建,有效提高丙酮检测灵敏度;通过对SMO纳米管进行有机单分子层表面修饰和骨架结构设计,研究终端官能团与丙酮气体的特定键和与电子捕获性能,同时通过链长调整及疏水官能团嫁接,实现表面疏水改性,大幅度提高SMO器件的选择性和抗湿性;获得复杂背景下对丙酮气体精准检测的便携式传感器,实现对临床患者呼气中丙酮的定量检测,为SMO器件在新一代糖尿病检测技术中的应用提供核心技术和关键器件。
呼气中痕量的呼气标志物气体是反映人体疾病的重要开放性标志物,对其准确检测是实现糖尿病、牙周炎等多种疾病无创、快速和实时监控的理想手段。半导体氧化物(SMO)传感器是对低浓度气体进行灵敏快速检测的重要方法,但还存在选择性不足、抗湿性差等实用化瓶颈问题,限制了其在呼气复杂成分和高湿度背景下的应用。本项目拟设计制备兼具呼气标志物(丙酮、硫化氢等)靶向性和抗湿性的有机功能化SMO呼气传感器,通过结构参数设计、增感剂搭载和表面孔道构建,有效提高目标气体检测灵敏度;通过有机单分子层表面修饰和骨架结构设计,研究终端官能团与气体的特定键和与电子捕获性能,大幅度提高SMO器件的选择性和抗湿性;获得复杂背景下对呼气标志物气体精准检测的便携式传感器,实现对临床患者呼气中部分疾病标志物的定量检测。所获得的器件对1 ppm 呼气标志物气体的灵敏度值达到65以上,检测下限扩展至8 ppb,选择性提高至未修饰SAM器件的15-143倍;在>80%RH的湿度环境下,响应值变化不超过实验室环境下的10%。基于以上研究,我们在Journal of Haszard Materials、Nanoscale Horizonal、Advanced Energy Materials、Nano Energy、Sensor. Actuat. B-Chem. 等杂志上发表相关SCI论文48篇、中文核心论文1篇、授权专利4项、团队负责人获评教育部人才工程青年学者、获吉林省自然科学一等奖1项。独立或协助培养硕士毕业2名、参加4次相关国内会议并做分组报告,获得吉林大学优秀青年基金资助、入选双一流学科建设人才激励岗位、吉林大学唐敖庆学者领军A岗。本项目为获得新一类高性能复合纳米材料及其在气敏传感,尤其是在新一代疾病检测技术中的应用提供了更具实用价值的功能材料,为实际应用奠定理论基础与实验依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
路基土水分传感器室内标定方法与影响因素分析
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
面向呼气标记物检测的高性能半导体氧化物传感器的研究
基于一维多孔结构氧化物半导体的糖尿病呼气检测气体传感器阵列的研究
高性能呼气标志物丙酮气体传感器的研究
面向呼气电子鼻的高灵敏纳米改性薄膜体声波传感器阵列研究