Analysis of exhaled breath for disease detection has broad potential applications in the clinical diagnosis and real-time self-diagnosis, due to painless, noninvasiveness and convenient. In this project, for detecting low concentration acetone, a typical breath marker in diabetes, the low power consumption gas sensor based on high surface semiconductor oxides is established. First, the sensitive and selective of the sensor could be achieved through the high recognition, conversion and utilization efficiency of the sensing materials. The hollow mesoporous oxides semiconductor sensors with the large surface areas are synthesized to improve the sensitivity to low concentrations acetone. Simultaneously, doping and surface modification technologies are employed to improve the selectivity towards to acetone. Second, the strategies of the anti-humidity agent loading and humidity compensation method are used to enhance the resistance to humidity interference. At last, the micro-balloon hot-wire type device, combing optimization of the device structure as well as working conditions, is employed to reduce the power consumption of the sensor. The performing of this project can provide theoretical basis for designing acetone gas sensor with low detection limit, high sensitivity, high selectivity, good humidity resistance and low power consumption, and go one step further to establish core technology and key component for a portable breathalyzer of diabetes.
利用呼气检测法对疾病进行诊断,具有无痛、无创和便利的优点,在临床诊断和实时自诊等方面显示了广阔的应用前景。本项目面向呼气中糖尿病标志物丙酮的检测,构建基于高比表面氧化物半导体的低功耗气体传感器。为了提升灵敏度、选择性、抗湿性以及降低功耗,融合中空介孔氧化物半导体高比表面的结构特征,掺杂和表面修饰的改性增感技术,提升氧化物半导体的识别功能、转换功能和敏感体利用率,实现对丙酮灵敏度和选择性的提升;通过掺杂抗湿、湿度补偿法等策略,增强传感器抗湿度干扰的能力;设计微球热线型器件结构,优化制作工艺和传感器工作条件,实现对目标气体低功耗快速检测。通过本项目的实施,为研制低检测下限、高灵敏、高选择性和高抗湿性的实用化丙酮传感器奠定理论基础,同时也为构建便携式糖尿病呼气检测仪提供核心技术和关键器件。
本项目针对糖尿病的非侵入诊断,通过调控敏感体的结构提升传感器对痕量目标气体的敏感性能,研制了灵敏度高、选择性好、检测下限和工作温度低的丙酮气体传感器。我们以介孔二氧化硅SBA-15为硬模板,通过纳米浇铸的方法合成了具有介孔结构的SnO2敏感材料;同时,采用化学沉淀法合成了SnO2纳米颗粒。并以两种不同类型的SnO2材料作为传感器的敏感体,制作成半导体气体传感器,对挥发性有机气体丙酮进行气敏性能测试。结果表明,介孔SnO2传感器对丙酮的响应明显高于化学沉淀法合成的纳米颗粒SnO2传感器;介孔SnO2传感器在225°C可检测低至0.5 ppm丙酮;并显示出对丙酮具有良好的选择性。这些优良的性能归可因于介孔材料具有的大比表面积能提供更多的活性位点、通透的孔道结构能增强气体的扩散速率。因此,介孔SnO2传感器可以明显提高对丙酮的敏感性能,为痕量丙酮检测提供了可靠的方法。通过本项目的实施,为构筑高性能气体传感器提供了思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
路基土水分传感器室内标定方法与影响因素分析
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
硬件木马:关键问题研究进展及新动向
基于SSVEP 直接脑控机器人方向和速度研究
疾病相关痕量呼气标记物的高性能气体传感器研究
三维有序大孔复合结构的制备及其糖尿病呼气标志物丙酮气体气敏特性的研究
用于呼气中痕量VOC标志物检测的石墨烯气体传感阵列研究
面向呼气标记物检测的高性能半导体氧化物传感器的研究