Silicon-based optical interconnect technology is considered as a promising solution for on-chip optical interconnect because of its high speed, low power consumption, and high integration. In this project, we plan to work on electrically powered photonic crystal nanobeam cavity lasers, to meet the strong requirement of silicon-based on-chip optical interconnect for smaller, faster and more energy-efficient microcavity lasers than VCSELs. For our structure in this project, electrons are provided by n metallic contacts positioned on top of the structure at its far ends, whereas holes are provided by p metallic contacts situated on top of the semiconductor base at a distance d from the sides of the cavity region. This configuration enables more carriers pass the cavity for radiative recombination. The nanocavity is bounded to SOI waveguide. The structure is fully encapsulated in SiO2 to reduce its thermal resistance. The main research involves the establishment of the rate equation model for photonic crystal nanobeam cavity lasers, the design and optimization of photonic crystal nanobeam cavity, the design of high- gain quantum well of NIP structure, the design and optimization of electrical power structure, and the process flow of electrically driven photonic crystal nanobeam laser. The lasers threshold is expected to be smaller 100 μA, and the power consumption is expected to smaller than 10 fJ/bit. Through this project, it is expected to meet the need of high-speed and energy-efficient lasers sources in on-chip optical interconnects, which is considered to have both scientific value and economic benefits.
硅基光互连技术因其高传输速率、低能耗、高集成度等优势被认为是一种极具潜力的片上光互连方案。针对硅基片上光互连对比VCSEL更高调制速度、更低能耗激光器的需求,本项目拟开展基于光子晶体纳米梁腔的电驱动激光器的研究,提出了平面双侧电流注入结构,在梁两端注入电子,梁两侧注入空穴使更多载流子通过梁腔区域参与辐射复合发光;采用晶圆键合和低折射率材料包覆的方案解决调制带宽的热限制。主要研究内容包括建立光子晶体纳米梁激光器的速率方程模型,基于模型分析激光器的静态和动态性能,结合能带模型和高速调制理论设计适用于高速低能耗光子晶体纳米梁激光器的圆环形光子晶体梁腔结构、高增益量子阱NIP结构和电注入结构,突破电驱动光子晶体纳米梁激光器的制备工艺,实现激光器阈值<100μA,能耗<10fJ/bit的研究目标。本项目的开展将有助于解决硅基片上光互连领域缺少高速低能耗光源的问题,具有重要的科学价值和经济效益。
针对光互连对高调制速度、低能耗激光器的需求,本项目开展了高速微腔激光器的研究,提出了平面双侧电流注入结构,在两端注入电子,两侧注入空穴使更多载流子通过有缘区参与辐射复合发光。主要研究内容包括建立高速微腔激光器的速率方程模型,基于模型分析激光器的静态和动态性能,结合能带模型和高速调制理论设计适用于高速微腔激光器的高增益量子阱NIP结构和电注入结构,突破微腔激光器的制备工艺,实现高性能微腔激光器。本项目的开展有助于解决光互连领域缺少高速低能耗光源的问题,具有重要的科学价值和经济效益。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
上转换纳米材料在光动力疗法中的研究进展
自组装短肽SciobioⅡ对关节软骨损伤修复过程的探究
SRHSC 梁主要设计参数损伤敏感度分析
基于耦合微腔的光子晶体高速脉冲激光器
大高宽比光子晶体纳米结构聚合物激光器研究
能带边缘型光子晶体激光器的研究
基于狄拉克锥原理的1.3μm高速量子点光子晶体面发射激光器的研究