The experimental investigations show that alloy nanoparticles possess a higher catalytic performance compared with the elemental metal nanoparticles, which are considered to be high-performance catalysts and can be used in the field of chemical engineering, such as environmental protection and new energy. However, the mechanism of the synergistic effect in the catalysis by alloy nanoparticles and the origin of the higher catalytic performance compared with the elemental metal nanoparticles are still not well-known. In this project, we aim at understanding the mechanism of the synergistic effect in the catalysis of CO oxidation by Pt-based alloy nanoparticles, such as PtFe, PtFeNi and PtCoNi alloy nanoparticles, based on quantum chemistry calculation, Monte Carlo simulation, and Langevin Dynamics simulation. Then, the theoretical results would be used to explain the origin of the higher catalytic performance of PtFe, PtFeNi and PtCoNi alloy nanoparticles compared with the pure Pt ones, as shown in the previous experiments. Moreover, the effect of composition, morphology, size and surface ligand on the catalytic performance will be observed, then the key factors for the catalytic performance of Pt-based alloy nanoparticles will be found, in the following the relationship of structure and catalytic performance of Pt-based alloy nanoparticles will be revealed, and finally new Pt-based alloy nanoparticles will be predicted. It is expected that our theoretical results would provide useful information for the explanation of the experimental phenomena and the development and preparation of new high-performance catalysts.
迄今大量实验研究表明,金属合金纳米粒子催化剂的催化性能明显优于相应的单金属纳米粒子催化剂,被认为是一种新型高性能催化材料,有助于突破环境保护和新能源等化工领域中遇到的瓶颈问题,然而人们对其协同催化作用机理尚缺乏深入认识,对于其催化性能优于单金属尚缺乏机理解释。本项目旨在通过建立耦合量子化学计算、蒙特卡洛模拟和朗格文动力学模拟的理论研究方法,从阐明PtFe、PtFeNi和PtCoNi等金属合金纳米粒子催化剂协同催化CO氧化的机理入手,阐述实验中发现PtFe、PtFeNi和PtCoNi等合金纳米粒子催化CO氧化性能明显优于单金属Pt纳米粒子催化剂的原因,揭示组成、形貌、尺寸和表面配体等结构调控对金属合金纳米粒子催化性能影响的规律,探寻影响金属合金纳米粒子催化性能的核心因素,建立相应的定性和定量关系,预测新的金属合金纳米粒子催化体系,为解释相关实验现象和开发新型高性能催化材料提供理论依据和指南。
本项目通过建立耦合量子化学计算、蒙特卡洛模拟和朗格文动力学模拟的理论研究方法,从阐明铂基等金属合金纳米粒子催化剂协同催化CO氧化的机理入手,阐述了实验中发现铂基等合金纳米粒子催化CO氧化性能明显优于单金属纳米粒子催化剂的原因,揭示了组成、形貌、尺寸和表面配体等结构调控对金属合金纳米粒子催化性能影响的规律,探寻了影响金属合金纳米粒子催化性能的核心因素,建立相应的定性和定量关系,预测新的金属合金纳米粒子催化体系,为解释相关实验现象和开发新型高性能催化材料提供理论依据和指南。在本基金项目的资助下,总共发表SCI收录的研究论文48篇,IF >3的论文35篇,其中在ACS Catalysis,PNAS,Nanoscale,IECR等高水平期刊上发表论文28篇。项目执行期间,项目执行期间完成培养硕士生6名,博士生4名。另有在站博士后1人,在读博士生4人,在读硕士生14人。在项目研究期间,主办国际学术会议1次,参加国际相关会议4次,国内相关学术会议8次,邀请国内外专家进行学术交流2次。
{{i.achievement_title}}
数据更新时间:2023-05-31
Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation
基于一维TiO2纳米管阵列薄膜的β伏特效应研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
钢筋混凝土带翼缘剪力墙破坏机理研究
丙二醛氧化修饰对白鲢肌原纤维蛋白结构性质的影响
纳米多孔铂基催化剂制备及甲醇电氧化反应机理研究
铂基双金属纳米催化剂用于二氧化碳氧化丙烷脱氢反应研究
利用动态现场原位技术研究铂族金属单原子和亚纳米催化剂CO氧化反应行为
高热稳定性铂基纳米合金催化剂的构筑及其催化甲烷部分氧化制合成气反应研究