Ricci流及其几何应用

基本信息
批准号:11371336
项目类别:面上项目
资助金额:50.00
负责人:孔胜利
学科分类:
依托单位:中国科学技术大学
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:徐金菊,张德凯,邱国寰
关键词:
挤压估计Ricci流不变锥对称空间微分不等式
结项摘要

This project studies some problems inspired by the geometry of Ricci flow in two directions. The first direction concentrates on the construction and classification of ancient solutions of Ricci flow. We want to extend Fateev's general explicit construction on 3-sphere to high dimensional spheres, as well as an explicit noncompact ancient solution. Then try to classify those which admit curvature conditions or symmetry by group actions, such as noncompact ancient solutions of type II with positive curvature operater or homogeneous ancient solutions on spheres or complex projective spaces. The second direction is to study Bohm-Wilking's invariant cone under Ricci flow. Suppose the Riemannian curvature tensor of an initial metric lies on the boundary of Bohm-Wilking invariant cone, consider if the Ricci flow converges to a symmetric space. Extend Brendle-Schoen's strong maximum principles to cover the case of Bohm-Wilking and investigate the connection with Riemannian holonomy group. Mean while, applying this extension to verify Bohm-Wilking's conjecture on the regidity of Einstein manifolds whose Riemannian curvature tensor lies on the boundary of invariant cone of Ricci flow. Also derive an explicit expression of Harnack inequalities for general invariant cone, especially for Riemannian 3-manifolds with non-negative Ricci curvature. Find high dimensional generalization of Hamilton's pinching estimates for four-manifolds with positive isotropic curvature.

本项目主要研究Ricci流中两方面的几何问题. 第一, 研究Ricci流的远古解的具体构造及分类. 首先将Fateev三维球上的一般远古解推广至高维球面. 尝试构造非紧的远古解. 对于具有曲率限制或拥有对称的远古解进行分类, 如具有正曲率算子的解或球面和复射影空间的齐性解. 第二, 研究Bohm-Wilking不变锥。若初始度量在锥的边界,考察Ricci流是否收敛于对称空间。 推广Brendle-Schoen的强极值原理至Bohm-Wilking不变锥的情形并考察与和乐群之间的联系。同时尝试证明Bohm-Wilking关于Einstein流形刚性的一个猜测。 在曲率满足Bohm-Wilking锥的条件下, 推广Hamilton的关于Ricci流的Harnack不等式, 特别是具有非负Ricci 曲率三维流形。推广Hamilton的关于四维流形具正迷向曲率的挤压估计至高维。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

涡度相关技术及其在陆地生态系统通量研究中的应用

涡度相关技术及其在陆地生态系统通量研究中的应用

DOI:10.17521/cjpe.2019.0351
发表时间:2020
2

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

环境类邻避设施对北京市住宅价格影响研究--以大型垃圾处理设施为例

DOI:10.11821/dlyj020190689
发表时间:2020
3

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022
4

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020
5

面向云工作流安全的任务调度方法

面向云工作流安全的任务调度方法

DOI:10.7544/issn1000-1239.2018.20170425
发表时间:2018

孔胜利的其他基金

相似国自然基金

1

Ricci流及其在微分几何学中的应用

批准号:10901113
批准年份:2009
负责人:张振雷
学科分类:A0304
资助金额:16.00
项目类别:青年科学基金项目
2

复几何中的典则度量和Ricci流

批准号:11271022
批准年份:2012
负责人:朱小华
学科分类:A0109
资助金额:56.00
项目类别:面上项目
3

Ricci流中非紧梯度孤立子的几何性质

批准号:10926062
批准年份:2009
负责人:郭洪欣
学科分类:A0109
资助金额:3.00
项目类别:数学天元基金项目
4

Ricci流的Harnack不等式和Ricci孤立子及应用

批准号:11101267
批准年份:2011
负责人:吴加勇
学科分类:A0109
资助金额:20.00
项目类别:青年科学基金项目