High energy cost and poor physical human-robot interaction are the two vital challenges faced by biped robots field. This significantly restricts the further advance and practical applications of biped robots. This project proposes a new biologically inspired solution to tackle those two crucial problems, motivated by the superior motion performance of the human musculoskeletal system. In this study, the delicate human body system design principle, which integrates tensile soft tissues and compressive hard tissues, will be revealed. In addition, the integrated force generation, transmission mechanism of the skeletal muscles, and also the highly efficient energy management strategy of the musculoskeletal system will be investigated. Based on the revealed biological principles, bionic flexible joint technique will be developed with the aid of multi-material 3D printing and high-performance soft materials. Moreover, innovative soft actuators inspired by the skeletal muscles, which provide integrated force generation and transmission, will be fabricated. The robot system will be constructed by incorporating flexible joint systems and bionic soft actuators by mimicking the biological energy management strategy, and driven by a muscle electromyography signal based control strategy. This innovative bio-inspired solution would provide a promising robot system technique to generate more energy-efficient and user-friendly biped robots that can be employed in practical daily services and tasks working in harmony with human.
运动能耗高和人机物理接触安全性差严重制约着双足机器人的运动性能提升与实用化,是人机共融和高性能机器人研究领域的技术瓶颈,也是目前该领域研究的前沿和热点。本项目基于人体骨骼肌肉系统提出仿生拉压体结构新思想,解析骨骼肌系统的柔性驱动传动一体化作用机理和人体骨骼肌肉系统的高效动力传输和能量管理机制,揭示基于材料、构形与拓扑结构的人体骨骼肌肉系统的生物拉压作用原理。在此基础上,本项目利用多材料增材制造和高性能软体材料,开发柔性仿生关节,研制驱动传动变速一体化的仿骨骼肌驱动器,开发基于骨骼肌电信号的行走控制策略与算法,通过仿生拉压体系统集成,实现高效的动力传输和有效的系统能量管理,提高机器人运动经济性和柔顺性,提升人机物理接触安全性。从而,创建和研发运动能耗低和人机物理接触安全性强的高性能仿生双足机器人的设计制造理论与关键技术。
本项目针对双足机器人运动能耗高和人机物理接触安全性差等问题,基于人体骨骼肌肉系统提出仿生拉压体结构新思想,研究了8名测试对象在慢速、常速、快速运动模式下的人体下肢运动学和动力学行为,解析了人体下肢骨骼-肌肉系统的能量转化、储存和传输规律,阐明了人体行走时系统级的动力传输和能量管理机制,揭示了基于材料、构形与拓扑结构的人体骨骼肌肉系统的生物拉压作用原理。在此基础上,开发了仿生拉压关节、仿生韧带、仿生驱动器、拉压体机器人设计等关键技术,研制了仿生拉压体机器人物理样机,实现了高度拟人三维自然步态,同时具有低能耗、高柔顺性、良好环境适应性等显著特征,有望大幅提升双足机器人的运动性能和实用性。项目研究成果可为具备高性能运动特征的仿生双足机器人的创新设计与开发直接提供重要的生物力学理论依据和技术支持,对我国机器人技术和产业抢占“共融机器人”的理论与技术制高点,取得源头创新成果,具有重要的科学意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
黄河流域水资源利用时空演变特征及驱动要素
基于SSVEP 直接脑控机器人方向和速度研究
拥堵路网交通流均衡分配模型
外界扰动下双足仿生机器人平衡控制研究
受生物学启发的双足机器人仿生设计与神经控制研究
基于生物张拉原理的节能步行腿仿生关键技术
仿生双足爬壁机器人的自主环境感知和路径规划