Bio-inspired biped wall-climbing robots (BBWCRs) are outstanding for their excellent agility and strong mobility, which making them ideal replacements to carry out high-rise tasks. However, lacking of autonomy prevents them from being widespread in practical applications. To bridge the gap, this project aims at making breakthroughs at autonomous environmental perception and climbing path planning of BBWCRs. Specifically, research contents include two aspects, which are 1) investigating multi-level (i.e., data from different sensors, global and local scope, low and high resolution) sensing ability through data fusion of multi-sensor information and associating mapping approach, to endow BBWCRs with the capability to autonomously sense and map the 3-D multi-surface environment; and 2) taking the goal of the task, the environmental constrains, and as well as the locomotion ability of the robot into account, studying systematic theories for planning the global path, the footholds, and single-step collision-free trajectories based on the map generated above, and also the method to autonomously fulfill locomotion in site, to endow BBWCRs with the capability to autonomously plan and execute climbing. Due to characteristics of the bio-inspired biped locomotion mechanism and the 3-D multi-surface climbing environment, the research contents proposed in this project distinguish from those of other mobile robots, for instance, ground mobile robots, in terms of sensing principles, planning theories and implementations, and so on. This project devotes to providing systematic theories and effective solutions to enhance the autonomy and the applicability of BBWCRs.
仿生双足爬壁机器人具有灵活性好和机动性强等优点,是执行高空作业的理想载体。但缺乏自主性是目前制约其获得广泛实际应用的瓶颈。据此,本项目拟重点突破双足爬壁机器人自主环境感知和路径规划这两个关键方面,具体而言:1)研究融合多传感信息对三维壁面环境进行多层次(不同信息源、全局和局部、粗略和精细)感知的理论和相应的地图构建方法,从而赋予机器人自主感知环境和构建地图的能力;2)综合考虑任务目标、环境约束和机动能力等因素,研究双足爬壁机器人在上述环境地图中规划全局路径、落足点和单步无碰运动的系统理论及在实际场景中自主付诸实施的方法,从而赋予机器人自主规划并执行攀爬移动的能力。仿生双足攀爬和三维壁面环境的特点,决定了本项目研究内容与其它诸如地面移动机器人的不同,在感知原理、规划理论和实现方法等方面均有其特色。本项目研究将为之提供系统的理论基础和有效的解决方案,以提高仿生双足爬壁机器人的自主性和适应性。
仿生双足爬壁/双手爪爬杆机器人具有灵活性好和机动性强等优点,是执行高空作业的理想载体,但缺乏自主性是目前制约其获得广泛实际应用的主要瓶颈。本项目紧密围绕“感知——规划——执行”的主线,同时针对三维壁面环境-双足爬壁机器人和三维桁架环境-双手爪爬杆机器人的特点展开研究工作。.1)攀爬环境感知方面:基于惯性导航单元和激光雷达构建了三维壁面环境感知的技术和方法,基于深度相机构建了三维桁架环境感知的技术和方法,实现了小规模壁面/桁架环境的建图和结构化。完成了国内外面向双足爬壁/双手爪爬杆机器人的三维环境地图构建的首次深入探索,进一步明晰了实现自主攀爬的总体技术方案。.2)攀爬路径及运动规划方面:提出了“全局路径规划-附着点规划-单步无碰攀爬运动规划”的三层规划架构,构建了各层规划器行之有效的算法,实现了三维环境中双足爬壁/双手爪爬杆机器人攀爬路径及运动高效、有效和优化规划。该研究成果填补了双足爬壁/双手爪爬杆机器人无碰攀爬路径及运动规划共性问题理论研究的空白,奠定了该类机器人在复杂三维环境中进行大范围攀爬移动的规划理论和技术基础。.3)攀爬运动执行控制方面:深入研究了目标壁面/杆件识别和位姿估计技术和方法,构建了双足爬壁/双手爪爬杆机器人自主校正末端进行附着的控制系统,实现了攀爬规划到移动运动的无缝自主执行,解决了机器人附着难和效率低的问题。.本项目不仅对攀爬机器人发展有重要意义,对双足步行机器人的自主移动以及操作臂的自主操作等研究亦有推动作用。
{{i.achievement_title}}
数据更新时间:2023-05-31
论大数据环境对情报学发展的影响
基于 Kronecker 压缩感知的宽带 MIMO 雷达高分辨三维成像
基于SSVEP 直接脑控机器人方向和速度研究
中国参与全球价值链的环境效应分析
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
引入健康状态感知的双足机器人自主运动决策与规划
基于压电无阀微泵吸盘的仿生微型六足爬壁机器人研究
六足机器人环境建模与自主运动规划
动态复杂海面机器人自主回收环境感知与仿生控制