To solve the high energy consumption problem which constraints the performance improvement of biped walking robot, this project selects the musculoskeletal system of human lower limb to be the bionic prototype to inspire innovative design and manufacture of walking leg of biped robot . The project determines study focus as the following: kinematics and kinetics study of human lower limb in variety motion patterns, to clarify multi-axis configuration characteristics and orientations of degree of freedoms of functional joints, and the possible effects of which on human gait and performances; establish biomechanical model of the musculoskeletal system of human lower limb in order to investigate the topology structure, configuration space of leg muscular system and their functions; to analyze mechanical properties of critical muscle groups and the effect on motion performance; to explore the energy transfer, storage and reuse pattern between muscular system and skeleton system during periodic motion; to clarify the energy control principle of human lower limb muscular system; to resolve the effective kinematic-coupling mechanism between muscular system and skeletal system and to reveal the energy saving principle of motion of lower limb based on musculoskeletal topology. Based on above, to develop functional design techniques of energy efficient bionic leg, and invent functional biomimetic joints and biomimetic muscle elements. Finally, manufacire one type of energy efficient bionic leg with high locomotion performance. This project would lay a biomechanics foundation and technical support for the innovative design and manufacture of walking leg-foot complex of biped walking robot.
针对制约双足步行机器人运动性能提升的高能耗问题,本项目以机器人步行腿为研究对象,以人体下肢骨骼-肌肉系统为仿生原型,研究多种运动模式下人体下肢的运动学和动力学行为,明晰功能性关节的多轴性构型特征、自由度位形及其对步态和运动性能的影响;建立基于解剖学的人体下肢骨骼-肌肉系统力学仿真模型,模拟研究下肢肌肉分布的拓扑结构、空间位形及其功能特征,分析关键肌群的力学特性及其对运动性能的影响;探究周期性运动中骨骼-肌肉系统内的能量的有效传递、储存及再利用模式,阐明肌肉系统对能量的调控原理;解析下肢肌肉系统与骨骼系统间的高效运动耦合机制,揭示基于骨骼-肌肉系统拓扑构型的人体下肢高效节能运动力学原理。在此基础上,开发节能仿生腿的功能设计新技术,研发功能性仿生关节与仿生力学作用器,最终研制出一种具备良好行走性能的节能仿生步行腿,为双足机器人高性能腿-足系统的创新设计与开发提供重要生物力学基础和技术支持。
本项目针对制约双足步行机器人的高能耗问题,项目组以双足机器人步行腿为研究对象,以人体下肢骨骼-肌肉系统为仿生原型,研究了10名测试对象在慢速、常速、快速运动模式下的人体下肢运动学和动力学行为,解析了踝关节的多轴性构型特征、自由度位形及其对步态和运动性能的影响;建立了基于解剖学的人体下肢骨骼-肌肉系统力学仿真模型,分析了关键肌群的力学特性及其对运动性能的影响;阐明了周期性运动中骨骼-肌肉系统对能量的调控原理,揭示了基于骨骼-肌肉系统拓扑构型的人体下肢高效节能运动力学原理。在此基础上,项目组研制了3款具备良好行走性能的节能仿生步行机器人,为双足机器人高性能腿-足系统的创新设计与开发提供了重要生物力学基础和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
温和条件下柱前标记-高效液相色谱-质谱法测定枸杞多糖中单糖组成
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
基于生物张拉原理的节能步行腿仿生关键技术
鸵鸟腿足生物组装与协同运动策略及松软地面高效平稳仿生步行机械腿关键技术
机械仿生耦合设计原理与关键技术
粘弹性仿生机器人腿高效率自稳定运动机理研究