Lower energy efficiency has been a key problem which limits the further improvement and engineering application of quadruped robot. To solve the problem, this project selects the domestic cat, one typical feline animal which has higher energy efficiency locomotion characteristic, to be the bionic prototype to inspire innovative design and manufacture of high energy efficient bionic leg. The project determines study focus as the following, based on kinematics and kinetics of cat in variety motion patterns, to clarify functional configuration characteristics of joint face and its possible effects on joint stiffness; to analyze the topological structure, and key mechanical property of ligament; to determine the actuation pattern, topological structure, and configuration of muscular system of lower limb; to explore the modulation and transfer pattern of force within cat musculoskeletal system; to resolve the kinematic-coupling mechanism between cat muscular system and skeletal system ; to clarify the effects of configuration, topology and key mechanical properties of ligament and muscular system on input torque and degree of freedom of joint, and in final to reveal the energy efficient principle of biotensegrity mechanism of musculoskeletal system of lower limb based on the coupling analysis of material, configuration and topology structure. Based on above, the project will propose biomechanical tensegrity design principles of energy efficient leg system; invent tensegrity based bionic joints and actuators; and develop key manufacture technologies of leg system, in order to overcome the technical shortcoming of energy efficiency and offer biomechanical theory foundation and technical support for innovative design and manufacture of energy effective quadruped robot.
针对制约四足机器人运动性能提升与实用化的高能耗、低效率关键问题,本项目选择具有高能效运动特征的猫科动物-家猫的下肢骨骼-肌肉系统为仿生原型,研究猫体下肢骨骼系统的关节面构形特征及其对关节刚度的影响,分析关节韧带的材料力学特性与拓扑结构特征;解析并表征关键肌群的拓扑结构、空间位形特征及力学作用特性; 模拟研究在周期性运动中骨骼-肌肉系统内的力的有效分配与传递模式,阐明肌肉系统与骨骼系统间的高效运动耦合机制;揭示韧带和肌肉系统的力学特性、拓扑结构及空间位形对骨关节扭矩与运动自由度的调控机制,最终阐明基于材料、构形与拓扑结构的猫体下肢骨骼-肌肉系统的生物张拉节能原理。在此基础上,提出节能仿生步行腿的张拉设计准则,开发张拉仿生关节与仿生力学作用器,获取节能仿生步行腿的关键制备技术,为突破腿式机器人运动能效技术“短板”、创新设计与开发高能效四足机器人提供重要的生物力学理论基础和技术支持。
本项目针对制约四足机器人运动性能提升的运动能耗高关键问题,以家猫的下肢骨骼-肌肉系统为仿生原型,研究了家猫在常速行走、小跑和奔跑运动下的运动力学行为,解析了猫体下肢骨骼系统的功能性关节韧带、肌肉的材料力学特性和拓扑结构特征,揭示了在周期性运动中骨骼-肌肉系统内的力的有效分配与传递模式,阐明了肌肉系统与骨骼系统间的高效运动耦合机制,揭示了韧带和肌肉系统的力学特性、拓扑结构对骨骼结构及骨骼关节稳定的调控机制,综合阐明了基于材料和拓扑结构的猫体下肢骨骼-肌肉系统的生物张拉节能原理。在此基础上,提出了节能仿生步行腿的张拉设计准则,开发了张拉仿生步行腿物理样机,简化了控制,获取了节能仿生步行腿的关键制备技术,为具备高能效运动特征的机器人腿足系统的创新设计与开发提供了重要的生物力学理论依据和技术支持。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
粗颗粒土的静止土压力系数非线性分析与计算方法
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究
高效节能仿生步行腿的生物力学原理与关键技术
鸵鸟腿足生物组装与协同运动策略及松软地面高效平稳仿生步行机械腿关键技术
仿肌-骨张拉的高性能机械腿关键问题研究
仿生拉压体双足机器人原理与关键技术