Mode shift is a special mechanism to realize continuously variable transmission and wide transmission range for electro-mechanical transmission. The stability and smoothness control under the limit boundary condition has become a huge problem for high-quality control of mode shift , because 1) energy multi-field coupling characteristics have not been fully characterized, 2) the superposition and coupling of uncertain load disturbance and nonlinear effect of components is easy to induce shift instability, 3) the joint action of the sudden change of the equivalent inertia and the uncertain load disturbance caused by the change of the topology is easy to induce the larger torque impact. In order to solve the problem of "neck sticking" in the key technology of electro-mechanical transmission in China, this study focuses on the research of modeling method of "mechanical-electrical-thermal" energy multi-field coupling system, the instability mechanism of mode shift under multi-variable disturbance and the multi-dynamic moment coordination and real-time optimization method of mode shift, so as to improve the dynamic quality and the adaptability of complex and changeable working conditions of electro-mechanical transmission during the dynamic transition process, overcome the bottleneck problems such as high-precision mechanism modeling and dimensionality reduction theory of multi-field coupling, stability control and smoothness control of mode shift under multi-variable disturbance, etc. It is expected that the research results will provide a new mechanism model and control method for the development of electro-mechanical transmission technology.
模式切换是机电复合传动实现无级变速和宽传动范围的特殊机制,极限边界条件下的转换稳定性和平顺性控制已成为模式切换高品质控制的巨大难题,原因在于1)能量多场耦合特性尚未得到完全表征,2)不确定性负载扰动与零部件非线性效应的叠加、耦合极易发生失稳现象,3)拓扑构型变化导致的等效惯量突变与不确定负载扰动的共同作用易于诱发较大的转矩冲击。为此,本项目围绕加快解决我国机电复合传动关键核心技术的“卡脖子”问题,重点开展“机-电-热”能量多场耦合系统建模方法研究、多变量扰动下模式切换失稳机理研究和模式切换多动力转矩协调和实时优化方法研究,提高机电复合传动动态过渡过程的动力学品质及复杂多变工况适应性,攻克多场耦合高精度机理建模与降维理论、多变量扰动下模式切换稳定性控制及平顺性控制等瓶颈难题。预期研究成果将为机电复合传动技术发展提供新的机理模型与控制方法。
模式切换是机电复合传动实现无级变速和宽传动范围的特殊机制,极限边界条件下的转换稳定性和平顺性控制已成为模式切换高品质控制的巨大难题,原因在于:能量多场耦合特性尚未得到完全表征;不确定性负载扰动与零部件非线性效应的叠加、耦合极易发生失稳现象;拓扑构型变化导致的等效惯量突变与不确定负载扰动的共同作用易于诱发较大的转矩冲击。本项目重点开展了面向控制的多物理场多域多尺度建模、模型融合与降维计算方法研究,以及模式切换过程动态转矩估计及鲁棒预测平顺性切换控制方法研究,实现了面向性能的机理模型建模精度达到90%,面向控制的特性模型建模精度达94.5% ,模式切换时间0.74s,纵向冲击度降低56.7%。本项目研究成果提高了机电复合传动动态过渡过程的动力学品质及复杂多变工况适应性,攻克了多场耦合高精度机理建模与降维理论、多变量扰动下模式切换稳定性控制及平顺性控制等瓶颈难题。
{{i.achievement_title}}
数据更新时间:2023-05-31
监管的非对称性、盈余管理模式选择与证监会执法效率?
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
宁南山区植被恢复模式对土壤主要酶活性、微生物多样性及土壤养分的影响
基于多模态信息特征融合的犯罪预测算法研究
钢筋混凝土带翼缘剪力墙破坏机理研究
多离合器ISG混合动力汽车分层多模式切换协调控制与优化
基于单电机的多模式混合动力耦合传动动力学机理与控制研究
多段机电复合传动换段过程失稳机理与稳定性控制研究
多轮独立电驱动车辆过驱动耦合解析与转矩控制分配研究