守恒律的动力学方法及其在计算流体中应用

基本信息
批准号:19901031
项目类别:青年科学基金项目
资助金额:4.00
负责人:汤华中
学科分类:
依托单位:北京大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:邬华谟,高家全
关键词:
计算流体力学双曲形守恒律动力学方法
结项摘要

Up to the begin of the nineties of the twentieth century, it becomes very mature to design high-order accurate non-oscillatory algorithms for hyperbolic conservation laws. The researchers have done much more excellent works in this field, and used them to compute numerically large scale scientific problems in engineering. They have become very useful tools for the engineering design and analysis of complex fluid flows. However, high-order accurate non-oscillatory algorithms are much more.non-linear. It is still very difficult to analyze them in theory. To some extent, we may transfer the interesting problem to a linear equation (i.e. discrete or continuous kinetic equations) by using gas-kinetic theory, and decrease the difficulty. Thus,based on the gas-kinetic theory, it is much more theoretically valuable and practically meaningful to study high-order accurate non-oscillatory algorithms and its application in computational fluid dynamics, whose numerical solutions will converge to the physical solutions. The main contents of this project include: convergence, numerical entropy condition, and nonlinear stability of high resolution kinetic schemes for hyperbolic conservation laws; construction of high resolution kinetic schemes for the general governing equations in fluid mechanics and analysis of its mathematical properties and behaviours; applications of high resolution kinetic schemes in numerical.computations of complex physical problems in fluid flows. We have studied numerical entropy condtions, nonlinear stability and.convergence of the high resolution discrete-velocity kinetic schemes-the relaxing schemes for nonlinear hyperbolic conservation laws. The results show that the conservative variable is TVD (total variation diminishing). The solutions of the second order accurate relaxed schemes satisfy a cell entropy inequality for.arbitrary entropy pair. Some remarks on convergence rate are also given. Based.on the pseudoparticle representation of the conservative vectors and fluxes, we.have given positivity-preserving analysis of a class of explicit and implicit.flux-vector splitting schemes. Based on the gas-kinetic theory, we constructed high resolution gas-kinetic schemes for multi-dimensional radiation hydrodynamical.equations, ideal magnetohydrodynamics, and multi-fluid flows, and used successfully them to simulate numericallythree-dimensional flows past space shuttle and resonant oscillations in a tube, and compute complex fluid flow.problems, such as Kelvin—Helmholtz instability etc. The theoretic results obtained via the particle movement may be considered as a reference for the theoretic analysis of generally nonlinear high-order accurate algorithms. The further study of high resolution gas-kinetic schemes is very useful to.study in future a hybrid algorithm that combines DSMC methods with Navier-Stokes.solver, because the high resolution gas-kinetic schemes are simple, robust, and parallelizable, and the direct simulation Monte Carlo (DSMC) type boundary conditions can be implemented naturally according to molecular speeds splitting. As we knew, the study of a hybrid or unified algorithm for fluid flows in continuous, transient, and rarefied flow regions will influence directly the development of aeronautical and astronautical industy.

近年来利用分子运动论研究守恒律方程组的数值方法引起人们广泛关注,它在论证流体力学方程组解的存在性和复杂流体问题的数值模拟等方面起着关键作用。本项目研究内容:多维守恒律方程组的高分辨动力学方法的非线性稳定性、熵条件和收敛性分析;高分辨动力学格式在计算流体力学中的应用;探寻用于低高空流场数值分析的统一算法或混合算法。.

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

栓接U肋钢箱梁考虑对接偏差的疲劳性能及改进方法研究

DOI:10.3969/j.issn.1002-0268.2020.03.007
发表时间:2020
3

气载放射性碘采样测量方法研究进展

气载放射性碘采样测量方法研究进展

DOI:
发表时间:2020
4

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制

DOI:
发表时间:2018
5

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016

汤华中的其他基金

相似国自然基金

1

移动网格方法在双曲守恒律和辐射扩散方程中的应用

批准号:11426214
批准年份:2014
负责人:杨晓波
学科分类:A0504
资助金额:3.00
项目类别:数学天元基金项目
2

全新的严格保证时空守恒律的数值方法及应用

批准号:19602010
批准年份:1996
负责人:张增产
学科分类:A0910
资助金额:8.00
项目类别:青年科学基金项目
3

间断Galerkin有限元方法在双曲守恒律和Vlasov系统中的算法设计及应用

批准号:11871428
批准年份:2018
负责人:仲杏慧
学科分类:A0504
资助金额:54.00
项目类别:面上项目
4

微分特征列集理论与方法及其在确定偏微分方程(组)广义对称和守恒律中的应用

批准号:10461005
批准年份:2004
负责人:特木尔朝鲁
学科分类:A0605
资助金额:20.00
项目类别:地区科学基金项目