As it’s known to all, the kinds of electric vehicle battery are various, and the voltage level and power level are in greater difference. In addition, the output voltage and load current are widely changed during the charging process. All the aforementioned factors make it difficult to design the charging system. In the charging system, DC-DC converter is directly connected with the battery, and its ability to adapt to the operating conditions decides the performance of the whole system. Thus, the project focuses on the topology structure and the control method of DC-DC converter. The main concerns are as follows: a) a family of soft-switching topologies with flexible combination is proposed to improve the adaptive capacity to the different charging requirements. 2) The methods to realize the optimization of controlled parameters are investigated based on the control strategy of maximum efficiency. 3) The influence of battery characteristics on the stability on the charging system is explored, and an autotuning method of PID controller is employed to guarantee the stability. This project aims to establish the DC-DC converter with high efficiency topology structure and high adaptive control and to reduce the effect on the system's performance caused by the non-linearity, dispersity and complexity of battery. This work will provide theory and technology supports for the battery charging system.
动力电池种类繁多,其电压等级、功率等级相差很大,同时,在充电过程中电池端电压、充电电流也会在宽范围内变化。上述因素对充电系统的适应能力提出了严峻挑战,而系统中的直流变换器直接与动力电池连接,其高效稳定运行成为了整个系统设计的关键。项目主要围绕直流变换器的拓扑结构与控制方法开展以下研究:1)提出一类能够灵活组合的软开关拓扑族,以提高拓扑对不同等级充电需求的适配能力;2)基于最大效率控制策略,研究复杂工况下可控参数自动优化的实现方式;3)分析动力电池自身特性对系统稳定性的影响,并应用PID参数在线自整定算法,保证系统稳定运行。项目的目标是构建以高效率拓扑结构、高适应性控制为特征的直流变换器,以削弱动力电池的非线性、分散性、复杂性对系统性能造成的影响,为动力电池充电领域提供关键技术支撑。
动力电池种类繁多,其电压等级、功率等级相差很大,同时,在充电过程中电池端电压、充电电流也会在宽范围内变化。上述因素对充电系统的适应能力提出了严峻挑战,而系统中的直流变换器直接与动力电池连接,其高效稳定运行成为了整个系统设计的关键。经过三年的研究,在直流变换器的拓扑结构与控制两个方面取得了以下研究成果:1)提出了一类能够灵活组合的软开关拓扑族,能够实现对不同等级充电需求的适配能力;2)应用最大效率控制策略,提升复杂工况下直流变换器的效率;3)应用PID参数自整定算法,保证了系统稳定运行。本项目构建了以高效率拓扑结构、高适应性控制为特征的直流变换器,削弱了动力电池的非线性、分散性、复杂性对系统性能造成的影响,为动力电池充电领域提供关键技术支撑。
{{i.achievement_title}}
数据更新时间:2023-05-31
玉米叶向值的全基因组关联分析
基于分形L系统的水稻根系建模方法研究
监管的非对称性、盈余管理模式选择与证监会执法效率?
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
锂离子动力电池快速充电技术研究
高性能户用电动汽车直流充电桩关键技术研究
三端口直流变换器拓扑理论及应用关键技术研究
基于移相串联优化光伏系统高电压等级直流功率汇集的关键技术研究