波-爱凝结研究中若干前沿问题的理论探索

基本信息
批准号:19975009
项目类别:面上项目
资助金额:13.00
负责人:戴显熹
学科分类:
依托单位:复旦大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:马永利,温涛,明灯明,黄静宜,侯宗义
关键词:
非均匀玻爱凝结泛函积分理论第一原理
结项摘要

In this study it was pointed out that the functional integral approach in quantum statistics (FIA) is not only a method, but also can be its third formulation. A. It covers the field of statistical mechanics; B. It has sound mathematical bases; C. Our theory in two points improved the Hubbard theory: 1. The dimensionality of the infinite dimensional integrals was reduced in principle; 2. There is no need for the infinite dimensional canonicaltransformation, which is necessary and difficult in Hubbard theory. D. We have solved the famous divergence (mathematical break down) problem in the functional integral approach of Anderson model. E. A possible investigation on phase transition by this formulation has been made. It further suggests us to study the exact solution of Bose-Einstein condensation (BEC) by FIA. We also proposed an exactly soluble model, obtained its exact solution and BEC distribution for an interacting system. Its shifts of Tc by interaction were studied. This is a hot field fighting by some PRL papers. Based on our exact solution, under a trustable approximation, our result will be exact the same as that of Kerson Huang in PRL This set a sound foundation for further studies on the third formulation in quantum statistics. Besides,the thermodynamic properties, distributions of ideal Bose gases in harmonic traps were studied analytically and numerically. Detailed investigation of the BEC stabilities of attractive Bose system in anisotropic traps, their instability boundaries by Bogoliubov transformation and the corresponding problems in low dimensions have been made. This project also made a series and "highly original studies" on the inverse problems of emissivity etc. The three rapid communications in PRE were highly appreciated by referees. Then they formed a new project supported by NSFC.

发展适合非均匀玻色体系的量子统计中泛函积分理论,越出平均场理论近似.进而发展其泛函积分理论的严格可解模型.研究越出博格柳玻夫近似的理论和方法,在元激发谱的国际争论和泛函积分理论研究BEC的领域中取得领先结果和地位.建议一个基于BEC的高温超导模型,用反演理论研究约束几何下液氨gama线后移及建议与BEC有关的效应和应用等.

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
2

感应不均匀介质的琼斯矩阵

感应不均匀介质的琼斯矩阵

DOI:10.11918/j.issn.0367-6234.201804052
发表时间:2019
3

地震作用下岩羊村滑坡稳定性与失稳机制研究

地震作用下岩羊村滑坡稳定性与失稳机制研究

DOI:10.16285/j.rsm.2019.1374
发表时间:2020
4

卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比

卡斯特“网络社会理论”对于人文地理学的知识贡献-基于中外引文内容的分析与对比

DOI:10.13249/j.cnki.sgs.2020.08.003
发表时间:2020
5

Wnt 信号通路在非小细胞肺癌中的研究进展

Wnt 信号通路在非小细胞肺癌中的研究进展

DOI:
发表时间:2016

相似国自然基金

1

控制理论中若干前沿问题的新探索

批准号:19402013
批准年份:1994
负责人:邓子辰
学科分类:A0702
资助金额:5.50
项目类别:青年科学基金项目
2

高维有相变统计问题严格解,量子统计第三种表述和玻-爱凝结前沿问题

批准号:10375012
批准年份:2003
负责人:戴显熹
学科分类:A2503
资助金额:23.00
项目类别:面上项目
3

Mather理论的若干前沿问题

批准号:11101294
批准年份:2011
负责人:王方
学科分类:A0303
资助金额:22.00
项目类别:青年科学基金项目
4

重味物理中若干前沿问题的研究

批准号:11175151
批准年份:2011
负责人:李营
学科分类:A2603
资助金额:60.00
项目类别:面上项目