In the past 20 years, the research on metal-organic frameworks (MOFs) has been developing rapidly. However, due to their poor stability (particularly chemical stability), the exploration of their applications in some fields have been limited. It is of great significance to construct highly stable MOFs and study their applications in some specific fields. On the basis of our previous work in related topics, this project is going to study the construction of chemically stable MOFs with multi-pyrazolate ligands and their catalytic performance in alkali system, to obtain new materials with specific catalytic properties, and thereby expanding the application scope of MOFs. In this study, taking the stability (especially alkali stability) of resulting MOFs and their good catalytic performance as the guidance, starting from the ligand design, metal ion selection, and their rational/controllable construction, we will design and synthesize series of novel porous MOFs and explore their property and application in three kinds of catalytic reactions in alkali systems. We study the synthesis conditions, chemical stability, structural features, and catalytic properties in electrocatalytic oxygen evolution, C-H bond fluorination, and Heck reaction resulting new MOFs; and investigate the influence of ligands and metal ions on the MOF structure and stability, of adding functional groups on their stability and catalytic performance, of the overall structure on the property, and of pore size and shape on the shape selective catalysis, et al.. Based on these results, we expect to conclude some general rules in constructing highly stable MOFs and simultaneously explore the potential application of these materials. Where, we can also further understand the intrinsic mechanism of chemical stability and catalytic performance of MOFs. The results from this project would promote the exploration of MOFs for catalytic application. The related results are also important and useful in guiding the target design and synthesis of other porous materials, as well as their property study.
近20年来,金属有机框架(MOFs)研究得到迅猛发展,但由于其稳定性较差,一些领域的应用探索受到限制。构筑高稳定MOFs并探索其在特定体系中的应用意义重大。本项目拟研究高化学稳定性多吡唑配体MOFs的构筑及其在碱体系中的催化性能,拓展MOFs应用范围,获得具特定催化性能的新材料。以高稳定性和良好催化性能为导向,从配体设计、金属离子选择及其可控构筑入手,设计合成新MOFs,探索其在电催化析氧、C-H键氟化和Heck反应中的催化应用。研究它们的合成条件,化学稳定性,结构特征,催化性能;配体及金属离子的选择对所得MOFs结构和稳定性、功能团的加入对稳定性和催化性能、孔性对择形催化、整体结构对性能的影响等。探索这类配体构筑MOFs的一般规律及所得材料的特征与潜在应用;深入理解MOFs化学稳定性及催化性能的内在机理。研究成果将对MOFs催化应用探索有推动作用,也对其他孔材料构筑与性能研究有指导意义。
近20年来,金属有机框架(MOFs)研究得到迅猛发展,但由于其稳定性较差,一些领域的应用探索受到限制。构筑高稳定MOFs并探索其在特定体系中的应用具有重要意义。本项目成功制备了系列高稳定的多吡唑配体基MOF材料,重点研究了其结构、稳定性及催化等方面的性质。开创性地通过金属离子置换的策略制备获得了首例基于贵金属离子Pd(II)和多吡唑配体的MOF材料,发现其高稳定、介孔的结构特征,并将其用于CO2光催化转化等多种催化反应体系中,催化效果优异。此外,在多吡唑配体基MOF研究上进行了进一步拓展,设计合成了系列吡唑羧酸混合官能团配体和多羧酸配体,研究了其结构、稳定性、多孔性及荧光传感等方面的性能,得到了一些重要结果,例如,发现了通过控制配体的刚性度,可实现高稳定性MOF材料的有效构筑。也探索了获得的MOF材料在气体分离、水吸附、膜制备和膜分离等方面应用潜力,其中几种MOFs在低碳烃分离、空气集水及制备高通量纳滤混合基质膜上性能表现优异,为相关研究提供了新思路。此外,制备了系列基于MOF的复合材料或衍生材料,在二氧化碳还原、分解水反应等催化反应上性质良好,取得了一些有意义的结果。在本项目资助下,共发表SCI收录论文43篇,其中影响因子大于10的一区论文15篇,部分论文发表在在Nature Commun.、J. Am. Chem. Soc.、Angew. Chem.、Acc. Chem. Res.、Small、Engineering等期刊上;申请中国发明专利17项,获授权专利22项,参编中英文专著二部3章节;项目执行期间,课题负责人获山西省自然科学一等奖(第4完成人)、亚洲杰出科研工作者和工程师奖等;入选国家“万人计划”科技创新领军人才、青年北京学者、北京战略科技人才、“全球高被引作者”(2017-2021年)等,在“全球顶尖前10万科学家排名”中位列1958名。
{{i.achievement_title}}
数据更新时间:2023-05-31
祁连山天涝池流域不同植被群落枯落物持水能力及时间动态变化
正交异性钢桥面板纵肋-面板疲劳开裂的CFRP加固研究
特斯拉涡轮机运行性能研究综述
硬件木马:关键问题研究进展及新动向
气相色谱-质谱法分析柚木光辐射前后的抽提物成分
基于芳香多羧酸配体的光解水制氢MOFs催化剂的可控构筑及性能研究
基于新型多吡啶配体配合物的构筑、结构与光催化性能调控
配体插入型疏水微孔MOFs的设计构筑及燃烧后碳捕集性能研究
基于光响应性聚合物配体的poly-MOFs材料的制备与催化性能研究