Piezoelectric pumps have shown broad application prospects in biomedical treatment, microelectronic devices, robots etc. However, currently the actual output performance and efficiency of piezoelectric pumps are generally low, and the main reason for this situation is the low effective working frequency of the piezoelectric actuators, which can not bring out the high power output capability of piezoelectric materials. This project proposes to suppress the high frequency inertial load of liquid by vibration filters and compensate for the inertial load of the driver and connector by resonance drive, so as to effectively improve the driving and impedance matching characteristics between the piezoelectric actuator and volumetric pump under high frequencies, combine high efficiency piezoelectric actuation and liquid delivery, and develop piezoelectric pumps with high output performances and working efficiencies. This project intends to conduct theoretical analysis, finite element simulation and experimental test to study the driving mechanism, structural design and control system of high frequency piezoelectric volumetric pumps. Firstly, analyze the mechanism of suppressing the inertial load of liquid in piezoelectric pumps, and establish the equivalent model. Secondly, investigate on methods of compensating for the inertial load of the actuator, and the vibration coupling and impedance matching characteristics between high frequency piezoelectric actuators and volumetric pumps with kinetic model, and design powerful and efficient piezoelectric resonators with different tuning fork structures. Finally, develop different piezoelectric pump prototypes step by step, summarize the theoretical analysis and experimental design methods, and provide new ideas for the development of piezoelectric pumps with high frequency and power density.
压电泵在生物医疗、微电子设备、机器人等领域有巨大的应用前景。然而,现有压电泵的输出性能和工作效率普遍较低,主要原因是压电驱动器的有效工作频率较低,制约了压电材料发挥高频下工作功率密度高的优势。本项目提出,通过振动滤波器抑制高频液体惯性负荷,采用谐振驱动补偿驱动连接部件的惯性负荷,从而有效改善高频下压电驱动器与容积泵的驱动匹配特性,实现高效率的压电驱动与液体输送相结合,研制出高输出性能和工作效率的压电泵。项目拟采取理论分析、有限元仿真和实验测试相结合的方法,对高频压电容积泵的驱动机理、结构设计和控制系统进行研究。首先研究压电泵液体惯性负荷抑制机理,建立等效模型;其次通过动力学模型研究高频压电驱动器惯性负荷抑制方法,及与容积泵的振动耦合及匹配特性,探讨不同结构高效谐振音叉式压电驱动器的设计方法;最后分阶段研制压电泵样机,总结相关理论分析和实验设计方法,为高频高功率密度压电泵的发展提供新思路。
虽然压电泵在药物输送、燃料电池、流体散热等领域具有广阔的应用前景,但目前压电泵的输出性能和工作效率普遍较低,主要原因是压电驱动器的有效工作频率较低,制约了压电材料发挥高频下工作功率密度高的优势。本项目提出通过振动滤波器抑制高频液体的惯性负荷,建立了液体惯性负荷的等效模型及其抑制机理,并通过对比实验验证了振动滤波器可以有效提高压电泵的高频输出特性。采用谐振驱动补偿机械连接部件的惯性负荷,改善高频下压电驱动器与隔膜泵的阻抗匹配特性,开发了基于折叠U形压电振子和二级菱形压电驱动器的高效谐振式压电泵,得到了具有较高输出性能的压电泵样机。通过可调谐振频率的压电振子匹配桥式单向阀的最佳工作模态,提供了优化谐振式压电泵输出性能和工作效率的有效方法。本项目的实施对推动高频高功率密度谐振式压电泵的发展和应用具有重要意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
高压工况对天然气滤芯性能影响的实验研究
基于资本驱动的新型互联网营造系统初探
高频响微等离子体测压原理及高负荷压气机端区流动的非定常测量
压电泵驱动器MEMS阀的力学性能研究
基于背压连续可调的燃煤发电机组变负荷控制方法研究
用于可变形飞行器的压电泵驱动器的研究