广义逆理论、应用及计算

基本信息
批准号:19971057
项目类别:面上项目
资助金额:15.00
负责人:王国荣
学科分类:
依托单位:上海师范大学
批准年份:1999
结题年份:2002
起止时间:2000-01-01 - 2002-12-31
项目状态: 已结题
项目参与者:陆森泉,高景
关键词:
矩阵广义逆多项式矩阵
结项摘要

The generalized inverses have been used in a wide variety of applications, for.example, the application in the system and control theory, in statistics, in numerical mathematics and in optimization.The theory, the applications and the computational.methods of the generalized inveres have been developing rapidly during the last 50 years. In this project,16 papers on the theory and the computational methods of generalized inverses are published. The main results are as follows. (1) Some additive perturbation for Drazin inverse are given. In particular a formula is given for the Drazin inverses of the sum of two matrices when the product of these matrices vanishes [4]. (2) The necessary and sufficient conditions are given for the reverse order laws of the weighted M-P inverse of a triple matrix product and the Drazin inverse of multiple matrix product to hold [15,1]..(3) The expressions of the minors of the weighted M-P inverse and the.{2}inverse having the prescribed range T and null space S of a matrix A are.given. From these expressions ,we can calculate any minors of the.generalized inverses without calculating the generalized inverses at first.[6,5].(4) A perturbation theory for the generalized inverse ) 2 (.,S T A is developed. The.theory is based on a useful decomposition ) 2 (.,S T B - ) 2 (.,S T A under (W) condition.[16]. A new representation of the generalized inverse ) 2 (.,S T A is derived by.using the relationship between ) 2 (.,S T A and the group inverse g A [9]. The.singular value decomposition of the generalized inverse ) 2 (.,S T A is presented..The SVD for some other generalized inverse are also presented [13]. Given.two free modules T and S over commutative rings with identity 1, the.necessary and sufficient condition is m R S AT = ⊕ for the generalized.inverse ) 2 (.,S T A to exist [11]..(5) When D is a symmetric matrix, the general symmetric solution pair (X,Y).and the general bisymmetric solution pairs of the equation XA=YAD are.presented. The necessary and sufficient conditions for the existence of the.bisymmetric solution pair of the simultaneous matrix equation XA=YAD,.ATXA=D and the general forms of such solution are derived [8]..(6) Leverrier-Chebyshev and Leverrier-Hermite algorithms are presented for.simultaneous computations of B( μ)=adj( μE-A) and a( μ)=det( μE-A) of.the singular pencil μE-A, where E is singular,but det( μE-A)≠0..Leverrier-Laguerre algorithms is presented for simultaneous computations of.the adjoint G(s) and the determinant d(s) of the matrix polynomial.2 1.2 A sA J s . . ,where J is singular,but det( 2 1.2 A sA J s . . )≠0 [12,2,7]..(7) An improved parallel algorithm for computing the weighted Moore-Penrose.inverse +.MN A and a new highly parallel algorithm for computing the.minimum norm(T) least-squares(S) solution of inconsistent linear equations.Ax=b are presented [14,3]..(8) A finite algorithm for the computation of the Drazin inverse of a polynomial.matrix is given, and it is also implemented with the symbolic computational.package Matlab. A two-dimensional recursive algorithm for computing the.Drazin inverse is also presented [10]..(B) In the nature there are many nonlinear problems with different symmetry. The.relation between the possible symmetries of solution and the group of symmetries of.the equation is always the interesting subject of mathematicians and physicists..We analyse and compute the symmetry-breaking bifurcation for the nonlinear.equations with 2 Z , m O , )2 ( O symmetries. Bifurcation of the reaction diffusion.equations and Kuramoto-Sivashinsky equation is analyzed by Liapunov-Schmidt.reduction technique. The bifurcation equations and asymptotic expressions of.nontrivial solutions near the bifurcation points is obtained. The bifurcations and chaos.in a class of planar 3 D - equivariant mapping are studied. The figures by.computations show the whole procedure from periodic points to chaos and from 2symmetry chaotic attractors to 3 D symmetry chaotic attractors of the mapping wi

研究约束矩阵方程求解和系统论及控制论中产生的矩阵和多项式矩阵的各种广义逆的理论、算法和应用软件,有良好的应用前景。

项目摘要

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

F_q上一类周期为2p~2的四元广义分圆序列的线性复杂度

DOI:10.11999/JEIT210095
发表时间:2021
2

基于全模式全聚焦方法的裂纹超声成像定量检测

基于全模式全聚焦方法的裂纹超声成像定量检测

DOI:10.19650/j.cnki.cjsi.J2007019
发表时间:2021
3

感应不均匀介质的琼斯矩阵

感应不均匀介质的琼斯矩阵

DOI:10.11918/j.issn.0367-6234.201804052
发表时间:2019
4

采用黏弹性人工边界时显式算法稳定性条件

采用黏弹性人工边界时显式算法稳定性条件

DOI:10.11883/bzycj-2021-0196
发表时间:2022
5

简化的滤波器查找表与神经网络联合预失真方法

简化的滤波器查找表与神经网络联合预失真方法

DOI:
发表时间:2015

王国荣的其他基金

批准号:50175027
批准年份:2001
资助金额:22.00
项目类别:面上项目
批准号:51775463
批准年份:2017
资助金额:58.00
项目类别:面上项目
批准号:81172363
批准年份:2011
资助金额:59.00
项目类别:面上项目
批准号:50905149
批准年份:2009
资助金额:20.00
项目类别:青年科学基金项目
批准号:59071022
批准年份:1990
资助金额:4.00
项目类别:面上项目
批准号:19071055
批准年份:1990
资助金额:1.00
项目类别:面上项目
批准号:19371054
批准年份:1993
资助金额:2.50
项目类别:面上项目

相似国自然基金

1

广义逆理论、应用及并行算法

批准号:19071055
批准年份:1990
负责人:王国荣
学科分类:A0502
资助金额:1.00
项目类别:面上项目
2

广义逆理论、应用及并行算法

批准号:19371054
批准年份:1993
负责人:王国荣
学科分类:A0502
资助金额:2.50
项目类别:面上项目
3

正则性及广义逆理论

批准号:11371089
批准年份:2013
负责人:陈建龙
学科分类:A0104
资助金额:62.00
项目类别:面上项目
4

度量广义逆的定性理论及广义逆在谱理论和Banach流形中的应用

批准号:11401143
批准年份:2014
负责人:马海凤
学科分类:A0208
资助金额:22.00
项目类别:青年科学基金项目