贝叶斯框架下风险度量的非参数估计及其应用研究

基本信息
批准号:71361015
项目类别:地区科学基金项目
资助金额:34.50
负责人:温利民
学科分类:
依托单位:江西师范大学
批准年份:2013
结题年份:2017
起止时间:2014-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:王江峰,章溢,张天芳,龚海林,王晓玲,方婧,张先坤,郑丹
关键词:
非参数估计风险度量贝叶斯理论
结项摘要

The most important problems for management decision-makers in finance, bank and insurance, are to measure, properly estimate, and lastly to control risks in some way. This project research mainly the nonparametric estimate of risk measure and their statistical inferences based on Bayes theory though combination of sample information and prior information. From the references available in the fields of risk measure estimate, there are mainly two categories, one is based on large sample theory of classical statistics, another is based on parametric Bayesian theory. However, these results inevitably assume some specify distribution for risk variable and the prior parameters. The project will develop the distribution-free estimate from the following way: (1) Bayesian nonparametric methods. We use Furguson's Bayesian nonparametric method to estimate the risk measure, which can estimate risk measure without specific risk distribution; (2) The constrained Bayesian and empirical Bayesian method. The estimation of risk measures are constrained to a certain class of sample functions under minimum mean square error, and then combined with empirical Bayes method to estimate the unknown structure parameters. In this way, the estimator derived do not specify not only risk distribution but also prior distribution of prior parameters. (3) The combination of empirical Bayes and Bayesian nonparametric methods. We combine empirical Bayes and Bayesian nonparametric methods to get rid of the assumptions for risk distribution.

如何更好地度量、评估并控制风险是金融、银行、保险等管理者和决策者最为关心的问题。本课题拟基于贝叶斯理论,结合样本信息和先验信息,研究风险度量的非参数估计及其统计推断。在目前大多数风险度量的估计相关文献中,主要分为两类,一类是基于统计大样本理论,另一类是基于参数贝叶斯原理。但是,这些结果都不可避免对风险的分布或参数的先验分布有所假设。本项目从以下几点去寻找风险度量的真正无分布非参数估计:(1)非参数贝叶斯方法,利用Furguson的非参数贝叶斯方法估计风险度量,这时不需要假设风险具体的样本分布;(2)限制贝叶斯和经验贝叶斯方法,将所估计的风险度量限制在某些特定的函数类中,得到均方误差最小的估计,再利用经验贝叶斯方法估计未知超参数,此时不仅不需要风险的分布假设,而且不需要参数的先验分布假设;(3)经验非参数贝叶斯方法,将经验贝叶斯方法和非参数贝叶斯方法相结合,去掉传统的分布假设。

项目摘要

本项目从以下几点研究了风险度量的估计:(1)非参数贝叶斯方法,利用非参数贝叶斯方法估计风险度量,这时不需要假设风险具体的样本分布;(2)限制贝叶斯和经验贝叶斯方法,将所估计的风险测度限制在某些特定的函数类中,得到均方误差最小的估计,再利用经验贝叶斯方法估计未知的超参数,此时不仅不需要风险的分布假设,而且不需要参数的先验分布的假设;(3)经验非参数贝叶斯方法,将经验贝叶斯方法和非参数贝叶斯方法相互结合,去掉传统的风险分布假设。本项目的研究得到了很多有意义的成果,能为风险管理部门提供参考。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

玉米叶向值的全基因组关联分析

玉米叶向值的全基因组关联分析

DOI:
发表时间:
2

低轨卫星通信信道分配策略

低轨卫星通信信道分配策略

DOI:10.12068/j.issn.1005-3026.2019.06.009
发表时间:2019
3

自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例

自然灾难地居民风险知觉与旅游支持度的关系研究——以汶川大地震重灾区北川和都江堰为例

DOI:10.12054/lydk.bisu.148
发表时间:2020
4

转录组与代谢联合解析红花槭叶片中青素苷变化机制

转录组与代谢联合解析红花槭叶片中青素苷变化机制

DOI:
发表时间:
5

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化

DOI:10.3799/dqkx.2020.083
发表时间:2020

温利民的其他基金

批准号:71761019
批准年份:2017
资助金额:30.00
项目类别:地区科学基金项目
批准号:71001046
批准年份:2010
资助金额:17.70
项目类别:青年科学基金项目

相似国自然基金

1

基于贝叶斯极端分位数回归的金融风险度量理论及应用研究

批准号:71671062
批准年份:2016
负责人:朱慧明
学科分类:G0114
资助金额:48.00
项目类别:面上项目
2

基于贝叶斯框架的标号带噪学习及其应用研究

批准号:61672280
批准年份:2016
负责人:谭晓阳
学科分类:F0605
资助金额:62.00
项目类别:面上项目
3

风险度量的非参数估计方法及其应用

批准号:11061007
批准年份:2010
负责人:杨善朝
学科分类:A0403
资助金额:26.00
项目类别:地区科学基金项目
4

非参数贝叶斯框架下的因子混合分析器的理论与应用研究

批准号:61201326
批准年份:2012
负责人:魏昕
学科分类:F0113
资助金额:27.00
项目类别:青年科学基金项目