The objective of this project is to identify three types of endogenous small molecules, including NO, CO, or H2S, whose content largely governs the generation and transformation of major diseases, by using a new material, called breathable in-situ growth metal-organic-frames on paper fibers (GMP) to realize the early age major disease fast preliminary screening and accurate analysis. In this project, the structure tunable GMP materials will be in-situ synthesized on paper fibers thanks to their pores and mechanical support. With this new material, these three types of endogenous small molecules can be recognized by transforming the inhale signals to exhale signals. As a result, the major disease preliminary screening integrated with accurate analysis can be reflected on paper chips. Through this technology, these three types of endogenous small molecules will be captured and catalyzed by integrating the advantages, such as structure tuning and identification catalysis, of paper chips and GMP materials. In addition, visualizable preliminary screening and electron storage and amplification mechanisms will be elucidated via catalyzing the gas molecules. In this process, the electron transport and electrochromic phenomenon will be induced based on the in-situ printing and synthesizing electrochromic polymer on GMP materials. Moreover, the visualizable preliminary screening signals and the accuracy of electric current direct reading will be investigated by controlling the space and time distinction between each fluid composition during movement. Finally, the accurate electric signal direct reading analysis based on the automatic chromogenic threshold value transfer and storage will be developed by combining a portable output device with the chromogenic threshold value sensitive paper electric capacitors.
细胞内活性气体小分子NO、CO、H2S的异常表达和存在水平与重大疾病的发生、转化密切相关。本项目在纸基材原位生长“呼吸”型金属有机骨架功能化(GMP)材料,实现对细胞内气体分子的识别“吸入”和信号转换后的“呼出”,构筑疾病初筛(预检)和精准分析一体化的纸芯片系统平台。利用纸的多孔性和支撑作用,在纸纤维上原位合成结构可控GMP材料;利用纸芯片的多功能可操控性、GMP材料结构可控与识别催化特点,完成细胞内三种气体分子的捕获、富集和催化;采用GMP材料上原位打印、合成电致变色聚合物,通过催化气体分子诱导聚合物发生电致变色和电子的传递,建立可视化预判和电子存储放大机制;控制各组分流体移动时空差异,研究信号可视化的预检与电流读出的精准性;设置纸芯片显色阈值,开发纸上电容器,结合便携式输出设备,实现超出阈值自动转换并存储放大的电信号直读精准分析,实现重大疾病早期快速初筛与精确分析的联动。
设计合成了多种有机结构分子,通过功能基团和活性位点的设计,构建系列比率型双光子和近红外荧光探针,设计制备无机-有机纳米复合结构的共敏化体系,结合活性物质催化体系产生强光电流,构建了新型光电化学(PEC)传感器,实现对目标检测信号的精准高灵敏可视化检测。采用可逆加成-碎片链转移(RAFT)聚合法制备含氟多孔聚合物,显著优化纸芯片功能单元的化学吸附和分离等方面的性能。开发了新型席夫碱及含氟染料,作为可一次写入多次读取光学数据存储介质和无墨喷水重复打印材料,用于纸芯片的数据存储放大及重复使用。通过溶液-蒸气退火法自组装成高度有序的柔性膜,作为呼吸传感器的电识别组件,构建了非侵入性并且可穿戴的传感设备。本项目通过对纸基材料进行设计改性,结合功能单元区域化组装,集成信号采集、传输和放大检测功能,制作结构、功能多样的微流控纸芯片,构筑疾病初筛(预检)和精准分析一体化的纸芯片系统平台,成功实现了便携式纸芯片对气体小分子的可视化检测,为无创和可穿戴医疗诊断设备的开发提供了新的思路。
{{i.achievement_title}}
数据更新时间:2023-05-31
演化经济地理学视角下的产业结构演替与分叉研究评述
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
小跨高比钢板- 混凝土组合连梁抗剪承载力计算方法研究
基于二维材料的自旋-轨道矩研究进展
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
磁响应型分子基晶态材料定向构筑及功能调控
基于二维材料的新型纸基无源微波调控结构研究
纸基三维聚合物刷结构调控与循环肿瘤DNA液体活检快速分析
金属基功能梯度材料结构的弹塑性分析与材料剪裁问题研究