复域差分和Painlevé差分方程的研究

基本信息
批准号:11401387
项目类别:青年科学基金项目
资助金额:22.00
负责人:刘永
学科分类:
依托单位:绍兴文理学院
批准年份:2014
结题年份:2017
起止时间:2015-01-01 - 2017-12-31
项目状态: 已结题
项目参与者:王建平,符曦,孙明锋
关键词:
差分算子理论差分方程PainlevéNevanlinna亚纯函数
结项摘要

Using the Nevanlinna theory of the value distribution of meromorphic functions and theory of complex differential equation, we investigate some important problems of the difference equations containing some difference Painlevé equation. Firstly, we seek the expression of the coefficients of the difference equation containing a difference Painlevé I equation or a difference III equation, which has an non-rational meromorphic solution of finite order; Secondly, we discuss whether the difference equations containing some difference Painlevé equation has an asymptotic solution in a certain domain; Thirdly, we establish the difference counterpart of Malmquist type theorem of generalized differential equations; Last but not least, we establish the difference analogue of the logarithmic derivative lemma in some angular domain or annular domain. Difference equations have been the focus on the content of applied mathematics and physics, and have a wide range of applications, such as quantum physics, control theory, signal processing and so on. It is difficult to solve the main extant problem if we only use the Nevanlinna theory of the value distribution of meromorphic functions. In this project, we completely solve two or three open questions of difference equations by using a combination of the value distribution of meromorphic functions and theory of complex differential equation and complex difference equations and some innovative research methods, which can be positive in the developments and connections in different branch of mathematics.

综合应用复域微分方程理论和亚纯函数值分布理论,深入研究涉及Painlevé型复差分方程的几个重要问题。第一、若包含Painlevé I、III 型差分方程存在一个有穷级超越亚纯解,给出系数的具体表达式;第二、研究包含Painlevé型差分方程在特定区域内渐进解的存在性;第三、研究一般代数微分方程的Malmquist定理的差分模拟;第四、建立环域或角域中差分形式的对数导数引理。复差分方程一直是应用数学与物理学的研究热点,其研究成果与方法在量子力学、信号处理、控制理论等方面都有广泛应用。现存复差分方程的主要问题如果仅用亚纯函数值分布理论已很难解决。本项目旨在将复域微分方程、Nevanlinna 值分布理论和复差分方程问题结合起来研究,创新研究方法,完全解决两到三个现存的复差分方程的开问题。这对复分析的发展、促进不同数学分支间的交叉均有重要意义。

项目摘要

通过三年的项目执行期,项目组成员不仅按照申请书的计划,具体研究涉及Painlevé型复差分方程的几个重要问题。同时,以本项目书为依托,我们对相应的微分方程对应同样的进行了研究。除此之外,我们还讨论了某类差分方程,得到一系列结果。与本项目有关的研究结果,以论文的形式在国内外学术期刊发表7篇。其中SCI收录期刊7篇,2篇被 SCI 期刊接受。3篇审稿。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于分形L系统的水稻根系建模方法研究

基于分形L系统的水稻根系建模方法研究

DOI:10.13836/j.jjau.2020047
发表时间:2020
2

拥堵路网交通流均衡分配模型

拥堵路网交通流均衡分配模型

DOI:10.11918/j.issn.0367-6234.201804030
发表时间:2019
3

资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验

资本品减税对僵尸企业出清的影响——基于东北地区增值税转型的自然实验

DOI:10.14116/j.nkes.2021.03.003
发表时间:2021
4

氯盐环境下钢筋混凝土梁的黏结试验研究

氯盐环境下钢筋混凝土梁的黏结试验研究

DOI:10.3969/j.issn.1001-8360.2019.08.011
发表时间:2019
5

基于分形维数和支持向量机的串联电弧故障诊断方法

基于分形维数和支持向量机的串联电弧故障诊断方法

DOI:
发表时间:2016

刘永的其他基金

批准号:41605058
批准年份:2016
资助金额:19.00
项目类别:青年科学基金项目
批准号:61473155
批准年份:2014
资助金额:82.00
项目类别:面上项目
批准号:51779002
批准年份:2017
资助金额:60.00
项目类别:面上项目
批准号:51279001
批准年份:2012
资助金额:82.00
项目类别:面上项目
批准号:61435003
批准年份:2014
资助金额:360.00
项目类别:重点项目
批准号:61175082
批准年份:2011
资助金额:59.00
项目类别:面上项目
批准号:41101180
批准年份:2011
资助金额:25.00
项目类别:青年科学基金项目
批准号:11405211
批准年份:2014
资助金额:28.00
项目类别:青年科学基金项目
批准号:81800621
批准年份:2018
资助金额:21.00
项目类别:青年科学基金项目
批准号:11875164
批准年份:2018
资助金额:66.00
项目类别:面上项目
批准号:41006073
批准年份:2010
资助金额:18.00
项目类别:青年科学基金项目
批准号:61402361
批准年份:2014
资助金额:26.00
项目类别:青年科学基金项目

相似国自然基金

1

复域差分, 差分方程和微分方程的研究

批准号:11171119
批准年份:2011
负责人:陈宗煊
学科分类:A0201
资助金额:38.00
项目类别:面上项目
2

复域差分方程和微分差分方程中若干问题研究

批准号:11801093
批准年份:2018
负责人:张然然
学科分类:A0201
资助金额:21.00
项目类别:青年科学基金项目
3

Painlevé 差分方程的研究

批准号:11201014
批准年份:2012
负责人:张继龙
学科分类:A0201
资助金额:22.00
项目类别:青年科学基金项目
4

复域差分, 差分方程与微分方程的解析性质

批准号:10871076
批准年份:2008
负责人:陈宗煊
学科分类:A0201
资助金额:28.00
项目类别:面上项目