Extensive research about the smoothness of closed positive (p,p) currents on complex manifold has been carried out. However, such research is very lack on almost complex manifold. Suppose that the almost complex manifold has local symplectic property. By Darboux theorem, we can establish Darboux coordinate system on it. Then we consider the almost complex manifold with local symplectic property as the generalization of complex manifold. Elkhadhra defined Lelong number and J-analytic subset on almost complex manifold. After Eliashberg and Gromov studying the convexity of symplectic manifolds, we think we can study the smoothness of closed positive (p,p) currents on almost complex manifold with local symplectic property. By using Donaldson’s holomorphic approximation method, we look forward to get the results which are similar to Demailly and Siu’s on almost complex manifold with local symplectic property or almost Kaehler manifold.
复流形或解析空间上闭,正(p,p)流(closed positive (p,p) currents)的光滑性已有了广泛深入研究。如何分析近复流形上闭,正(p,p)流的正则性尚未不知。假如近复流形具有局部辛性质,那么通过Darboux定理我们可以在流形局部使用Darboux坐标卡。这样一来我们可以认为具有局部辛性质的近复流形是复流形的推广。在Eliashberg和Gromov考虑了辛流形的凸性和Elkhadhra在近复流形上定义了Lelong数和J-解析子集后,我们认为在近复流形上也可以考虑闭的正(p,p)型流的正则性和奇点。假设(M,J)具有局部辛性质或是近Kaehler的。为了研究这类近复流形上闭,正(p,p)流的奇异性,我们引入Donaldson在研究辛子流形时开创的全纯逼近方法。然后期望得到Demailly和Siu在复流形上类似的结果。
复流形上闭,正定(p,p)型流的奇点集和其正则性已有了深入广泛研究。在复流形上闭,正(p,p)型流的光滑性的研究中,人们主要利用了复流形的局部拟凸性。Y.-T. Siu通过对Lelong数的次水平集的分析来考虑闭,正(p,p)型流的正则性,并得到一系列结果。Demailly用Chern联络通过光滑(1,1)形式来逼近闭,正定(1,1)流。 如何对近复流形上闭,正定(p,p)型流的奇点和光滑性进行分析也非常重要。Y. Eliashberg 和 M. Gromov考虑了辛流形的局部凸性和F. Elkhadhra在近复流形上引进J-解析子集后,我们认为这些结果在具有局部辛性质的近复流形上或近Kahler流形上也成立。. 该项目主要对近复流形上闭,正定(p,p)型流的奇点和光滑性进行了研究。特别的,在四维近复流形上取得了一系列的结果。总所周知四维近复流形具有局部辛性质,这样一来四维近复流形局部就具有凸性(称为w-凸或者J-凸)。根据局部凸性项目组定义了闭,正(p,p)流的Lelong数以及相应的次水平集。通过对次水平集的分析,项目组推广Y.-T.Siu的半连续定理和分解定理和J.-D.Demailly的逼近定理。最后项目组在加若干条件解决了Donaldson的“tamed to compatible”问题。
{{i.achievement_title}}
数据更新时间:2023-05-31
针对弱边缘信息的左心室图像分割算法
基于LS-SVM香梨可溶性糖的近红外光谱快速检测
基于多色集合理论的医院异常工作流处理建模
TRPV1/SIRT1介导吴茱萸次碱抗Ang Ⅱ诱导的血管平滑肌细胞衰老
黄曲霉毒素B1检测与脱毒方法最新研究进展
Fano流形上Kaehler-Ricci流的极限
具有高对称性流形上极值Kaehler度量的研究
近Kaehler流形中的若干问题
十维流形上的近复结构