近Kaehler流形上Lelong数及其上水平集的研究

基本信息
批准号:11701226
项目类别:青年科学基金项目
资助金额:23.00
负责人:谈强
学科分类:
依托单位:江苏大学
批准年份:2017
结题年份:2020
起止时间:2018-01-01 - 2020-12-31
项目状态: 已结题
项目参与者:任双双,韩涉
关键词:
1)流上水平集近Kaehler流形Lelong数正(1J解析子集
结项摘要

Extensive research about the smoothness of closed positive (p,p) currents on complex manifold has been carried out. However, such research is very lack on almost complex manifold. Suppose that the almost complex manifold has local symplectic property. By Darboux theorem, we can establish Darboux coordinate system on it. Then we consider the almost complex manifold with local symplectic property as the generalization of complex manifold. Elkhadhra defined Lelong number and J-analytic subset on almost complex manifold. After Eliashberg and Gromov studying the convexity of symplectic manifolds, we think we can study the smoothness of closed positive (p,p) currents on almost complex manifold with local symplectic property. By using Donaldson’s holomorphic approximation method, we look forward to get the results which are similar to Demailly and Siu’s on almost complex manifold with local symplectic property or almost Kaehler manifold.

复流形或解析空间上闭,正(p,p)流(closed positive (p,p) currents)的光滑性已有了广泛深入研究。如何分析近复流形上闭,正(p,p)流的正则性尚未不知。假如近复流形具有局部辛性质,那么通过Darboux定理我们可以在流形局部使用Darboux坐标卡。这样一来我们可以认为具有局部辛性质的近复流形是复流形的推广。在Eliashberg和Gromov考虑了辛流形的凸性和Elkhadhra在近复流形上定义了Lelong数和J-解析子集后,我们认为在近复流形上也可以考虑闭的正(p,p)型流的正则性和奇点。假设(M,J)具有局部辛性质或是近Kaehler的。为了研究这类近复流形上闭,正(p,p)流的奇异性,我们引入Donaldson在研究辛子流形时开创的全纯逼近方法。然后期望得到Demailly和Siu在复流形上类似的结果。

项目摘要

复流形上闭,正定(p,p)型流的奇点集和其正则性已有了深入广泛研究。在复流形上闭,正(p,p)型流的光滑性的研究中,人们主要利用了复流形的局部拟凸性。Y.-T. Siu通过对Lelong数的次水平集的分析来考虑闭,正(p,p)型流的正则性,并得到一系列结果。Demailly用Chern联络通过光滑(1,1)形式来逼近闭,正定(1,1)流。 如何对近复流形上闭,正定(p,p)型流的奇点和光滑性进行分析也非常重要。Y. Eliashberg 和 M. Gromov考虑了辛流形的局部凸性和F. Elkhadhra在近复流形上引进J-解析子集后,我们认为这些结果在具有局部辛性质的近复流形上或近Kahler流形上也成立。. 该项目主要对近复流形上闭,正定(p,p)型流的奇点和光滑性进行了研究。特别的,在四维近复流形上取得了一系列的结果。总所周知四维近复流形具有局部辛性质,这样一来四维近复流形局部就具有凸性(称为w-凸或者J-凸)。根据局部凸性项目组定义了闭,正(p,p)流的Lelong数以及相应的次水平集。通过对次水平集的分析,项目组推广Y.-T.Siu的半连续定理和分解定理和J.-D.Demailly的逼近定理。最后项目组在加若干条件解决了Donaldson的“tamed to compatible”问题。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x

Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x

DOI:10.1016/j.scib.2017.12.016
发表时间:2018
2

Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth

Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth

DOI:
发表时间:
3

七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖

七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖

DOI:
发表时间:
4

针灸治疗胃食管反流病的研究进展

针灸治疗胃食管反流病的研究进展

DOI:
发表时间:2022
5

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响

DOI:
发表时间:2020

谈强的其他基金

相似国自然基金

1

Fano流形上Kaehler-Ricci流的极限

批准号:11371256
批准年份:2013
负责人:张振雷
学科分类:A0109
资助金额:50.00
项目类别:面上项目
2

具有高对称性流形上极值Kaehler度量的研究

批准号:11901480
批准年份:2019
负责人:连朝
学科分类:A0108
资助金额:25.00
项目类别:青年科学基金项目
3

近Kaehler流形中的若干问题

批准号:11371309
批准年份:2013
负责人:王宏玉
学科分类:A0108
资助金额:56.00
项目类别:面上项目
4

十维流形上的近复结构

批准号:11301145
批准年份:2013
负责人:杨会军
学科分类:A0111
资助金额:23.00
项目类别:青年科学基金项目