To aim at design requirements of large capacity, high lift, low drag, and high lift-to-drag ratio for high speed air vehicles, a new aerodynamic configuration concept, named high pressure zone capture wing (HCW) configuration is firstly proposed in this program. By comparison with traditional lift body or waverider configurations, the new feature of the HCW configuration is to introduce a surface wing, which is upon the airframe of the vehicle and paralleled with the free stream. In high speed cruising conditions, the HCW can capture the high pressure zone compressed by the upper surface of the vehicle. Thus the lift of the vehicle can get a considerable compensation due to the large pressure difference between the upper and the lower surface of the HCW. Therefore, the aerodynamic performance can obtain a large improvement as a result. Preliminary studies showed that the lift of the HCW configuration increases by more than 30 percent compared with the configuration without the HCW while the lift-to-drag ratio increases by 20 percent above. By taking the numerical simulation and the optimization design as main research tools, the main study contents of this program are as follows. First of all, the aerodynamic shape optimization study for the airframe and the HCW will be carried on in various flight conditions. Next, the coupled effect between the airframe and the HCW is plan to study. Besides, some detailed modification of the HCW configuration, such as the blunt of the leading edge (both the airframe and the HCW) and the connecting structure between the airframe and the HCW will also be taken as parts of study contents. As the expecting results, we hope to obtain a general design methodology and some fundamental rules for the HCW configuration. We also hope the results of this program will open up a new door of the configuration design for high speed flight vehicles.
针对高速飞行器大容积、高升力、低阻力和高升阻比设计需求,申请人提出一种高压捕获翼新型气动构型。该构型在传统乘波或升力体基础上,在飞行器机体背风面增加与来流方向平行的曲面翼(高压捕获翼)。高速飞行条件下,捕获翼可以捕获来流经机体上壁面压缩后形成的高压区,利用捕获翼上下表面的大压力差使飞行器的升力获得有效补偿,进而大幅提升飞行器的气动性能。初步分析表明,与一般升力体或乘波构型比较,增加高压捕获翼后飞行器的升力可大幅提升达30%以上,升阻比提升一般达20%以上。本项目拟以数值分析和优化设计为研究手段,着重针对捕获翼气动外形优化,机体上压缩面/捕获翼间耦合规律分析,钝化及支撑机构的影响,以及构型的主要适用飞行条件(范围)等问题开展研究。目标为在考虑热防护、容积等主要影响因素下,提出高压捕获翼气动构型的一般设计原则以及最优飞行马赫数/高度范围等最佳工作区域,为高速飞行器气动构型设计开辟一条新思路。
高超声速飞行器的飞行速度一般可达现有飞机的7倍以上,可大幅缩短飞行时间,为未来洲际旅行提供一种更为快捷舒适的交通工具。飞行器的气动布局一般须具有“三高”特点,即高升阻比以保证其航程,高升力使其在高海拔巡航飞行条件下保持升重平衡,高容积率以满足载客/载货需求。但由于在高速飞行条件下,激波和摩擦阻力急剧上升,飞行器的升阻比很难提升。此外,升阻比和升力系数均与容积率存在强烈的矛盾关系,这是现阶段制约飞行器气动性能提升的主要瓶颈问题。基于这一问题,本项目重点针对高压捕获翼新概念构型开展了一系列基础性研究,完成了如下研究工作:1)基于锥形机体及平顶异性机体等不同机体构型,开展了捕获翼外形的参数化设计,相应的提出了高效参数化设计方法。在此基础上,进一步以优化计算为主要手段开展了一系列研究,获取了大量的数值仿真数据,进而基本摸清了捕获翼的基本设计原则和设计方法;2)在方法研究基础上,基于一系列典型构型,通过精细数值模拟进一步分析了机体和捕获翼之间的耦合关系,提出了确定捕获翼位置的一种有效方法,并针对典型构型给出了经验公式;3)在前述研究基础上,针对典型构型,初步开展了支撑装置对整个构型气动性能的影响情况分析,其结果表明,采用后掠型支撑相对较好,不但可以有效降低构型的总阻力,其侧壁压缩的激波高压区还可进一步提升构型的升力,减小支撑对整个构型升阻比的影响;4)基于前述优化构型,开展了多工况数值模拟,通过大量的计算分析,结果表明,高压捕获翼构型在马赫数5-10范围内均具有很好的性质,可大幅提升飞行器的升阻比及升力系数。随马赫数进一步提升,尽管其升阻特性仍可获得大幅改善,但气动加热问题将上升为主要矛盾,因此需要进一步的工作对其进行研究和评估。本项目的研究可为未来高超声速飞行器的研发提供了一种全新的备选方案。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
钢筋混凝土带翼缘剪力墙破坏机理研究
宽弦高速跨音风扇颤振特性研究
滚动直线导轨副静刚度试验装置设计
基于非线性接触刚度的铰接/锁紧结构动力学建模方法
高速气动悬浮列车多向翼耦合壁面效应的机理研究
高速飞行器气动热参数辨识方法深入研究
基于正可控度的多旋翼飞行器构型分析与优化设计
脉动大气作用下微型旋翼飞行器的空气动力学机理