With the rapid advancement of energy innovation, multi-energy system has been becoming an inevitable choice for efficient energy utilization. Multi-energy system is featured with correlation of multi-agents’ interest, coexistence of static and dynamic characteristics, coupling of various components, and high proportion of renewables, all of which contribute to the difficulties in the system operation optimization, including the coupling of high dimensional differential and algebraic constraints, bad performance of numerical stability, and strong uncertainty. The project is prepared to carry out the research from four aspects: system modeling, operation optimization, market mechanism, and demonstration verification. The connotation of each aspect is elaborated as follows. 1) Building a steady/dynamic model from component level to network level; revealing coordinated and complementary characteristics of electricity, gas, and heat; proposing a method based on generalized energy storage model to quantify flexible resources of the system. 2) Constructing an optimization hierarchy architecture with hybrid time scales; proposing a coordinated optimization method with hybrid dispatching cycles and a modeling method with hybrid time resolutions. 3) Creating a multi-layer trading mechanism for multi-energy market including system level, regional level and user level; proposing a decoupled and dimension-reduction algorithm for fast solution of multi-agent gaming problem under coupling environment. 4) Developing a comprehensive simulation platform and a coordinated operation optimization system; verifying the effectiveness of proposed methods by Tongli demonstration project. This project aims to solve a series of problems including system flexible resources quantification, multi-scale refined dispatch methods, and multi-agent gaming in the market, and to provide vital theoretical and technical support for efficient energy utilization.
随着能源变革的快速推进,发展多能互补系统已成为能源高效利用的必然选择。多能系统的多主体利益关联、静/动态共存、多环节耦合、高比例新能源特性,使得该系统运行优化面临高维微分-代数耦合、数值稳定性差、强不确定性难题。本项目拟从系统建模、运行优化、市场机制和示范验证四个角度开展研究:1)建立从元件级到网络级的稳态/动态模型,揭示电气热多环节协同互补特性,提出基于广义储能模型的灵活性资源量化方法;2)构建多能混合时间尺度运行优化体系,提出混合调度周期协同优化和混合时间分辨率建模方法;3)提出包含系统级-区域级-用户级的多能源市场交易机制,以及多能耦合环境下的多主体博弈问题的解耦降维快速求解策略;4)开发多能互补系统仿真平台和协同运行优化系统,依托同里新能源小镇开展实证研究。通过本研究,攻克多能流灵活性刻画、多尺度精细化调度、多主体市场博弈等一系列难题,为能源高效利用提供重要的理论和技术支撑。
随着能源供需矛盾的日益突出与环境问题的日益严峻,如何提高能源综合利用效率、降低温室气体与污染气体排放已经成为我国乃至世界范围内亟需解决的社会难题。突破传统能源体系架构,发展高比例分布式能源接入、电气热深度耦合的多能互补系统,是实现电力及能源系统低碳转型、构建现代能源体系的必然选择。本项目针对多能互补系统的静/动态共存、多环节耦合、多主体利益关联、高比例新能源等关键特性,围绕系统运行所面临的高维微分-代数耦合、时空尺度差异显著、不确定性强等核心挑战,从系统建模、运行优化、市场机制和示范验证四个方面开展了深入研究,解决了多能互补系统建模分析、运行灵活性评估、多能流协同调控、多主体协同运行等一系列难题。具体研究成果包括:1)建立了多能互补系统设备与网络模型库,提出了热惯性聚合建模方法,提出了多能互补系统运行灵活性定义、测度体系、数学模型与评估方法;2)分析了电气热网络动静态特性,提出了多能互补系统电气热网络混合分辨率建模方法,提出了多主体混合指令周期运行优化方法,建立了混合时间尺度运行优化理论;3)设计了多能耦合市场结构与交易机制,建立了多利益主体在多能市场中的竞标博弈模型,提出了基于博弈理论的多利益主体最优竞价策略与求解算法;4)研发了多能互补系统综合仿真平台,基于国网江苏电力公司电力科学研究院与扬州广陵新城多能互补系统进行了应用验证。.本项目研究成果从聚合建模、灵活性评估、混合时间尺度调度及多主体博弈决策等方面发展、完善了多能互补系统经济高效运行理论,从平台研发与应用验证两个方面推动、支撑了多能互补系统的工程实践,具有理论开拓与实践指导意义。研究成果可为新型电力系统建设提供理论基础,为如期实现“双碳”目标提供技术支撑,为实现我国电力及能源技术的国际引领奠定基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
氟化铵对CoMoS /ZrO_2催化4-甲基酚加氢脱氧性能的影响
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
协调自治的多能源形式负荷调度方法研究
基于供需互配的多能互补建筑能源系统优化集成机制研究
太阳能品位间接提升的多能源互补系统集成研究
面向多能源互联的区域综合能源系统动态协同优化运行技术研究