As the new generation of drug delivery, the property study of the DNA nanostructure near the solid liquid interface needs to be concerned. Especially when applied in the complex human body, one needs to know how the DNA nanostructure is affected by the microenvironment of the surrounding cells. However, many researchers mainly focus on the structural design of the DNA nanomaterial and its behaviour and efficiency to go into the cells, whereas it is very rare to study its properties near the solid liquid interface. In this proposal, we plan to use the variety of methods of the interface characterization, such as quartz crystal microbalance, atomic force microscope and micro-cantilever, etc., in such as way to study the properties of the DNA nanostructures near the solid liquid interface and the biomimetic interface, which are different from those in the bulk solution including surface topography, adsorption kinetic, molecular morphology near the interface, the interactions with different chemical groups and the susceptibility under the influences of the external factors such as ions and electromagnetic field. This study provides theoretical criteria and data support for the application of DNA nanostructures in the new generation of drug delivery system and is of great importance to understand the special properties of the DNA nanostructures near the solid liquid interface.
作为新一代药物载体,DNA纳米结构在固液界面处的性质研究不容忽视。尤其应用于人体这样一个复杂系统,我们需要理解DNA纳米材料如何受到周围细胞微环境的影响。但是研究者们大多将精力集中在DNA纳米结构的设计,以及该纳米结构进入细胞的行为,效率等研究方向,鲜有将目光关注于该结构材料在固液界面处的性质。本课题采用多种界面表征方法,如石英晶体微天平,原子力显微镜,微悬臂梁等,研究DNA纳米结构在固液界面和仿生固液界面处不同于体溶液中的性质,包括表面形貌,吸附动力学,界面处分子形态变化,与不同化学基团的相互作用以及受离子和电磁场等外界因素影响等。 此项研究为该纳米材料应用于新一代载药系统提供理论依据和数据支持,对于理解DNA纳米结构在固液界面的特殊性质具有重要意义。
作为新一代药物载体,DNA纳米结构在固液界面处的性质研究不容忽视。尤其是应用于人体这样一个复杂系统,我们需要理解DNA纳米材料如何受到体内复杂微环境的影响。.本课题采用多种界面表征方法,研究了DNA纳米结构在固液界面处的性质,及其受到外界环境,如温度、离子浓度、pH、磁场等的影响;同时研究了其与活细胞相互作用后的亚细胞分布情况。为其作为药物载体提供了理论依据和数据支持,对于理解DNA纳米结构在固液界面处的特殊性质具有重要意义。.本课题发现了在固液界面处,DNA三维纳米结构会由于pH值的变化而发生结构变化,这种性能可用于pH响应的DNA结构敏感元件的制备;DNA折纸结构能够用于制备DNA导电薄膜,可以实现较长距离的电荷传输;强磁场环境会对DNA结构产生巨大的破坏,未来有可能应用于航空航天领域。
{{i.achievement_title}}
数据更新时间:2023-05-31
DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences
基于被动变阻尼装置高层结构风振控制效果对比分析
神经退行性疾病发病机制的研究进展
基于改进LinkNet的寒旱区遥感图像河流识别方法
萃取过程中微观到宏观的多尺度超分子组装 --离子液体的特异性功能
科研管理
基于同步辐射的固液界面“纳米气泡”结构与性质研究
固液界面的磷脂多层膜:结构、性质和应用
固液界面处功能基团对铀酰离子吸附行为的调控机制
纳米流体固液界面摩擦及其对液体输运性质影响的研究