With the ever-growing strategic demands on the development of electric vehicles from Government, by combining the principle of flux-switching, and the latest concepts of elementary motor as well as modular drive, a novel modular and elementary flux-switching permanent magnet in-wheel motor is proposed, which can satisfy the operation features of four-wheel independently driving-based electric vehicles, such as higher torque density, high efficiency, high integration, and high reliability. In this project, a set of general design theories and analysis methods for high-torque density and high-efficiency in-wheel motors under the limited dimensions are to be established; the design principles of the in-wheel motors with high integration under strict space are to be proposed; the nature of enhanced heat transfer with great effectiveness for the in-wheel motor under complicated conditions are exposed; the coordinated control and fault-tolerant operation strategy of in-wheel motor under varying road conditions are to be formulated; proof-of-principle and practical prototypes are to be manufactured and validated by experimental tests. Through this project, a solid and complete theory and technique system can be established and lay a strong foundation for the future research and application. This project faces the national demands with the aim to solve the scientific problems, and will supply a new technical route for the drive systems of electric vehicles, exhibiting not only important significance and academic values, but also promising application prospects.
针对大力发展电动汽车的国家重大战略需求,本项目以四轮独立驱动电动汽车为应用领域,将“磁通切换”原理与最新“单元化电机”与“模块化驱动”电机理论相融合,提出一类满足四轮独立驱动电动汽车运行特点、具有高转矩密度、高效率、高集成度以及高可靠性的新型模块化多单元磁通切换永磁轮毂电机。建立有限尺寸限制下的轮毂电机高转矩密度、高效率通用设计理论与分析方法;提出狭小空间束缚下轮毂电机驱动系统高集成度一体化设计原则;揭示复杂约束条件下轮毂电机高效液冷强化传热内在机理;制定多变路况下的轮毂电机协调控制与容错运行策略;试制原理样机与工程样机,构建实验测试平台,形成较为系统完整的理论与技术体系,为更深入的后续研究和实际应用奠定基础。本项目既面向国家重大需求又饱含丰富而深刻的科学问题,将为电动汽车驱动技术的发展探索一条新的技术路线,不仅具有重要的科学意义与学术价值,而且应用前景广阔。
本项目以四轮独立驱动电动汽车为应用领域,将“磁通切换”原理同“单元化电机”与“模块化驱动”电机理论相融合,提出一类满足四轮独立驱动电动汽车运行特点、具有高转矩密度、高效率、高集成度以及高可靠性的新型模块化多单元磁通切换永磁轮毂电机。研究内容包括建立模块化多单元磁通切换永磁轮毂电机设计理论与分析方法;实现模块化多单元磁通切换永磁轮毂电机的多物理场耦合分析;形成基于分层控制架构的轮毂电机容错运行策略;试制原理样机与工程样机,构建实验测试平台,形成较为系统完整的理论与技术体系。重要结果包括(1)构建了分数槽集中绕组永磁电机的统一绕组模型,既用于指导本项目的电机设计也为其他电机拓扑提供了设计参考;(2)基于气隙磁场解析模型,推导了两类永磁轮毂电机的转矩尺寸方程,给出了最大转矩输出条件下的最优几何参数配合;(3)针对模块化多单元磁通切换永磁轮毂电机进行双向磁热耦合迭代计算;(4)分别基于电流滞环控制算法、载波脉宽调制策略、空间电压矢量脉宽调制策略实现了模块化多单元磁通切换永磁轮毂电机容错运行时的控制。本项目为电动汽车驱动技术的发展探索一条新的技术路线,本项目为研制具有我国自主知识产权的模块化多单元磁通切换永磁轮毂电机奠定了理论与技术基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
硬件木马:关键问题研究进展及新动向
基于多模态信息特征融合的犯罪预测算法研究
滚动直线导轨副静刚度试验装置设计
惯性约束聚变内爆中基于多块结构网格的高效辐射扩散并行算法
基于图卷积网络的归纳式微博谣言检测新方法
四轮毂电机独立驱动电动汽车的转矩控制策略研究
电动汽车用容错型混合励磁轴向磁通切换永磁电机及其控制系统研究
模块化无轴承磁通切换永磁电机及其控制系统研究
增程式电动汽车用无刷化双转子磁通切换电机及其复合式驱动系统研究