The bearingless motor is the forefront of high-speed and ultra-high-speed motor research field, combining drive and the suspended function in a body. Bearingless switched reluctance machine has the advantages of simple structure and low cost, but its efficiency and power density is worse than bearingless permanent magnet machine. The configuration of the conventional bearingless permanent magnet machine having magnets in the rotor compromises the performance due to the poor cooling and high speed limitation. The project proposes novel modular bearingless flux-switching permanent magnet machines having torque windings, suspension windings and permanent magnets in the stator, and there is no permanent magnets or windings in the rotor. The machine exhibits a bright future for high-speed drive field, offering solid rotor structure, high power desity and high speed. The purpose of the project is to develop novel structure of stator-permanent magnet modular bearingless flux-switching machine. The general method is explored for electromagnetic parameters calculation, design and analysis. The working principle of the machine is analyzed; the system dynamics model is established. Based on the real-time dSPACE, a digital drive and experimental platform of the novel machine is built. The machine structure optimization and configuration of the torque windings, suspension windings and permanent magnets are studied, and the general laws and methods applying to other types of bearingless machine are summed up, which further refine the basic science and lay a theoretical and technical foundation for the further research and the practical application.
无轴承电机集驱动与自悬浮功能于一体,是目前高速及超高速电机研究领域的前沿。无轴承开关磁阻电机具有结构简单、成本低的优点,但其效率和功率密度低于无轴承永磁电机;而传统的无轴承永磁电机,永磁体置于转子,电机高速运转时永磁体散热和机械牢固性问题不容忽视。本项目提出新型模块化无轴承磁通切换永磁电机,其电枢绕组、悬浮绕组及永磁体均置于定子,转子上既无绕组又无永磁体,聚转子结构坚固、高功率密度和高转速于一身。本项目旨在开发出新颖合理的定子永磁型模块化无轴承磁通切换电机结构;探索该类电机电磁参数计算、设计和分析的一般方法;分析其运行机理,建立系统动力学模型;试制原理样机,构建以dSPACE为核心的数字化控制系统实验平台;研究电机结构最优化,电枢绕组、悬浮绕组与永磁体尺寸的最佳配置,尝试总结出普遍适用于其它类型无轴承电机的一般规律和方法,提炼基础科学问题,为后续研究与实际应用奠定基础。
无轴承电机集驱动与自悬浮功能于一体,是目前高速及超高速电机研究领域的前沿。无轴承开关磁阻电机具有结构简单、成本低的优点,但其效率和功率密度低于无轴承永磁电机;而传统的无轴承永磁电机,永磁体置于转子,电机高速运转时永磁体散热和机械牢固性问题不容忽视。本项目提出了几种新型的定子永磁型无轴承电机,其电枢绕组、悬浮绕组及永磁体均置于定子,转子上既无绕组又无永磁体,聚转子结构坚固、高功率密度和高转速于一身;利用有限元软件,建立了电机的有限元分析模型,研究了不同运行条件下的磁场分布,电枢磁场、悬浮磁场和永磁磁场间的相互作用规律,导出电机空载与负载磁链,反电势,绕组自感和互感的变化规律,获得了电机的静态电磁特性;利用简单磁路法分析了定子永磁型无轴承电机的等效磁路,推导了电机的径向悬浮力数学模型,通过有限元仿真验证了数学模型的正确性。根据上述研究成果制造了1台实验样机,对电机的悬浮绕组电感、电枢绕组电感和空载反电势进行了测试和分析,搭建了以DSP (TMS320F28335)为核心的硬件控制平台,为后续研究与实际应用奠定理论基础。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化
基于ESO的DGVSCMG双框架伺服系统不匹配 扰动抑制
资源型地区产业结构调整对水资源利用效率影响的实证分析—来自中国10个资源型省份的经验证据
次级无轭部双边磁通切换直线电机及其控制系统研究
风力发电用模块化高温超导励磁磁通切换电机机理及其控制系统研究
混合励磁型磁通切换电机及其控制系统研究
基于定子磁极局部磁场调制的定子永磁型无轴承磁通切换电机驱动系统的基础研究