The new type of extender range electric vehicles (EREVs) have the advantages of high efficiency, high energy-saving and high endurance mileage, which have become one of the hot spots in the field of electric vehicles in recent years. In this project, by incorporating the theory of dual-rotor motor into the flux-switching motor, a new brushless dual-rotor flux-switching permanent magnet motor and the compound drive system is proposed for EREVs. The proposed motor and drive system have the advantages of high integration, flexible control, high power density and high energy transmission efficiency while overcoming the deficiencies in the current EREVs, where the series topology of "(Universal) extended range and pure electric vehicles" are often used. Basic principle and optimized design method of this motor will be investigated in details. The new dynamic allocation and optimization of the control method in dual energy source system will be studied under different operation conditions. Moreover, multi-objective optimization theoretical model and the optimal control strategies will be studied to obtain the high efficient in engine, generator, vehicle drive motor and battery. The project will explore the different power structure in EREVs and establish a multi-objective optimal operation control strategy, which lay a theoretical foundation and provide experimental evidence for the applications of EREVs.
增程式电动汽车兼具纯电动汽车高效、节能和混合动力汽车续航里程长等优点,是近年来电动汽车领域研究的热点之一。本项目将双转子电机理论引入定子永磁型磁通切换电机,针对增程式电动汽车动力要求,提出了一类基于无刷化双转子磁通切换电机的复合式驱动系统。该电机及系统,在克服现有增程式电动汽车"(通用型)增程器+纯电动汽车"串联式动力架构诸多不足的同时,具有集成度高、控制灵活、高功率密度和高能量传输效率等优点。本项目旨在研究该类具有新型拓扑结构电机的基本原理和优化、设计方法;提出复杂工况下双能量源系统动态分配和优化控制的一般方法;提炼出该类电机及其复合驱动系统在复杂工况下兼顾发动机、发电机、驱动电机及动力电池效率的整车多目标优化理论模型及其优化控制策略。本项目的顺利开展,将为探索增程式电动汽车不同的动力结构形式和建立多目标最优整车运行控制策略,提供有益的理论和实验依据。
增程式电动汽车兼具纯电动汽车高效、节能和混合动力汽车续航里程长的优点,是近年来电动汽车领域研究的热点之一。本项目将双转子电机理论引入定子永磁型磁通切换电机,针对增程式电动汽车动力要求,提出了一类基于无刷化双转子磁通切换电机的复合式驱动系统。该电机及系统,在克服现有增程式电动汽车“(通用型)增程器+纯电动汽车”串联式动力架构诸多不足的同时,具有集成度高、控制灵活、高功率密度和高能量传输效率等优点。本项目旨在研究该类具有新型拓扑结构电机的基本原理、多目标分层优化设计方法、电磁设计;提出复杂工况下双能量源系统动态分配和优化控制的一般方法;提炼出该类电机及其复合驱动系统在复杂工况下兼顾发动机、发电机、驱动电机及动力电池效率的整车控制策略。本项目的深入研究,将为探索增程式电动汽车不同的动力结构形式和建立多目标最优整车运行控制策略,提供有益的理论和实验依据。
{{i.achievement_title}}
数据更新时间:2023-05-31
基于分形L系统的水稻根系建模方法研究
一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能
拥堵路网交通流均衡分配模型
卫生系统韧性研究概况及其展望
端壁抽吸控制下攻角对压气机叶栅叶尖 泄漏流动的影响
电动汽车用双转子混合励磁轴向磁通切换电机设计与效率优化控制研究
新型双转子轴向磁通切换型混合励磁发电机及其控制系统研究
四轮独立驱动电动汽车用模块化多单元磁通切换永磁轮毂电机研究
模块化无轴承磁通切换永磁电机及其控制系统研究