Electrochemical reduction of carbon dioxide (CO2) is one important research direction in the fields of energy and environment, and developing high performance and stable electrocatalysts is the key issue to achieve commercialization of this technique. Nano-structural copper has attracting great attentions due to their unique fuel products, however, the nano structural copper developed so far have limited specific surface area and mass transfer efficiency, in addition lack of simple and controllable manufacturing methods, which are inadequate for applications. This project proposes a novel route to fabricate high-volume and hierarchical-porous copper which could exhibit high specific surface area and mass transfer efficiency through regulation of pores on different length scale, based on the combination of 3D printing and dealloying of amorphous alloys. The following research contents will be studied deeply: 1) fabrication and microstructure of three-dimensional porous BMGs by laser 3D printing; 2) fabrication of nanoporous structure by dealloying and the its mechanism; 3) effect of hierarchical-porous structure on the catalytic properties, products selectivity and stability. The above mentioned research can reveal the underlying mechanism of how the microstructure of 3D printed BMG on the formation of nanoporous structure and affecting factors of dealloying. In addition, this project can also enhance the understanding of effect regularity and mechanisms of hierarchical-porous structures on the electroreduction of CO2. This project is of importance for design and preparation of high-volume nanoporous electrocatalysts and promoting their use in the field of utilization and transformation of carbon dioxide.
电催化还原CO2是能源与环境领域的重要研究方向,而开发高效稳定的电催化剂是实现其应用的关键。纳米金属Cu因其能产生高能量密度的催化产物成为最具前景的材料之一,但常规纳米金属Cu仍存在催化效率低,产物选择性不高、稳定性差及缺乏简易可控的制备方法等问题。本项目利用非晶合金3D打印/脱合金化复合技术构筑分级多孔Cu纳米金属,通过不同尺度的孔径调控有望解决常规纳米金属Cu所存在的问题。拟开展的研究内容包括:1)具有宏观孔结构的非晶合金先驱体的3D打印制备及其微观组织结构;2)纳米多孔结构的制备及脱合金化机理;3)分级多孔结构对催化效率、产物选择性及稳定性的影响。通过以上研究,阐明3D打印非晶合金先驱体的微观组织对纳米多孔结构的影响,纳米多孔结构的形成机理与影响因素,并揭示分级多孔结构影响产物选择性与稳定性的规律。本研究对开发体相纳米多孔催化剂,并促进其在CO2还原上的应用有重要科学意义和实用价值。
电催化还原CO2是能源与环境领域的重要研究方向,而开发高效稳定的电催化剂是实现其商业化的关键。常规纳米颗粒金属电催化剂仍存在产物选择性差、稳定性不足等问题。而近年来快速发展起来的3D打印与脱合金化技术为构筑高效、高稳定性电催化剂提供了新的技术途径。在基金委的资助下,本项目在基金为资助下,开展了以下五个方面研究:1)不同宏观孔结构对3D打印非晶合金前驱体组织结构的影响机制;2)3D打印非晶合金前驱体的合金成分遴选判据;3)3D打印非晶合金/脱合金构筑分级多孔金属的孔结构与成分调控;4)3D分级多孔金属电催化还原CO2的性能与机制;5)3D打印制备多孔Fe基非晶合金/Cu复合催化剂及催化性能。获得的代表性研究成果如下:(1)揭示了不同宏观孔结构对激光3D打印非晶合金前驱体微结构的影响机制。(2)提出了适用于SLM技术的非晶合金成分遴选新判据。(3)揭示了化学成分(如Ag)对分级纳米金属电催化还原CO2性能的影响规律,揭示了其机制。(4)揭示了分级多孔结构对催化剂稳定性的影响机制。(5)开发若干高活性、可长效循环使用的3D多孔金属催化剂,实现高产率生成合成气及高效降解污水。本项目在Journal of Materials Chemistry A, ACS Applied Materials & Interfaces, Applied Materials Today, Additive Manufacturing, Scripta Materialia等期刊发表论文10篇,研究工作在国际上有一定影响。受邀撰写3D打印非晶合金的综述1篇(Mater Sci Eng Report)。获教育部自然科学奖二等奖、湖北省自然科学奖三等奖。本项目负责人入选湖北省首批青年拔尖人才计划、获湖北省杰青资助及中国材料大会非晶合金/高熵合金分会杰出青年科学家奖。本项目的研究对开发面向能源和环境用的新型高性能催化剂具有重要的科学意义和工程意义。
{{i.achievement_title}}
数据更新时间:2023-05-31
低轨卫星通信信道分配策略
Wnt 信号通路在非小细胞肺癌中的研究进展
结直肠癌肝转移患者预后影响
基于LBS的移动定向优惠券策略
2A66铝锂合金板材各向异性研究
基于非晶合金脱合金化纳米多孔构建复合型电极材料及其性能研究
面向太空制造的非晶合金材料3D打印研究
激光选区熔化(SLM)3D打印非晶合金及其结构演变与性能调控
脱合金过程中的固相非晶化的研究