Within the era of nanoscale semiconductor technology, reliability has become one serious concern for the design of integrated circuits. Currently, the exploration of fault tolerance techniques to improve the reliability of the microprocessor relies on the large-scale simulated error injection experiment, which lacks the detailed investigation of errors’ physical origin. Furthermore, such experiment incurs significant setup cost and timing efforts, which prohibit its usage for fast evaluation of the errors’ impacts. This project focuses on the modeling and impacts analysis of the timing error, which has become a prevalent type of error for the microprocessor in nanoscale CMOS technology. The errors are extracted from the dynamic timing analysis of post-layout circuit netlist and realized as probabilistic value change of the sequential logic. Afterward, the potential errors in the circuits are accurately traced by incorporating the masking abilities and dynamic behaviors of logic units during the instruction-set simulation of the microprocessor. The proposed analysis of error propagation analytically predicts the impacts of the errors, therefore significantly reduces the cost of large-scale error injection experiment. The framework of error modeling and propagation analysis is integrated into a high-level processor design environment, which facilitates the fast prototyping of architecture and application-level error tolerance techniques.
随着集成电路产业的迅速发展,可靠性与容错技术已经成为芯片领域的重要问题之一。现今容错技术的探索依赖于在芯片仿真阶段的大规模统计错误注入实验,然而基于该类实验的可靠性分析有三点缺陷:第一,缺乏对错误产生机制的模拟;第二,缺乏对错误在芯片中传输机制的分析;第三,注错实验通常建立于寄存器传输级及其以下级别,无法快速对错误在高级别的影响进行估计。为解决上述问题,本项目首先通过分析纳米级别芯片中延时错误的产生机制,运用动态时序分析技术进行有物理依据的延时错误注入实验。其次,本项目通过研究芯片中逻辑单元的湮没效应对错误的传输进行动态追踪,从而减少统计注错实验的巨大成本。其三,本项目将错误建立与传输分析集成于高级别处理器设计流程,从而在芯片仿真阶段进行快速故障预测。本项目的意义在于建立一套在芯片高层次设计阶段进行准确可靠性分析的机制,从而辅助设计人员探索针对体系结构及应用程序的容错技术。
随着集成电路产业的迅速发展,可靠性与容错技术已经成为芯片领域的重要问题之一。现今容错技术的探索依赖于在芯片仿真阶段的大规模统计错误注入实验,然而基于该类实验的可靠性分析有错误机理难以挖掘,实验成本大、时间长的问题。为解决上述问题,本项目研究纳米级别芯片中延时错误的产生机制,运用动态时序分析技术进行有物理依据的延时错误注入实验。其次,研究芯片中逻辑单元的湮没效应对错误的传输进行动态追踪,从而减少统计注错实验的巨大成本。其三,本项目运用模拟错误注入对人工智能芯片可靠性进行分析,并设计出具有高可靠性的低开小微架构加固策略。本项目在EDA处理器仿真器构建,人工智能芯片设计,芯片微架构加固等领域进行了深入探索,共发表12偏论文,申请10项发明专利(授权1项),设计处理器仿真器错误模拟工具1款,设计并流片65nm工艺人工智能芯片1款。所研发成果为集成电路可靠性领域,特别是人工智能芯片的容错性设计开拓了新的探索空间。
{{i.achievement_title}}
数据更新时间:2023-05-31
粗颗粒土的静止土压力系数非线性分析与计算方法
基于LASSO-SVMR模型城市生活需水量的预测
中国参与全球价值链的环境效应分析
基于多模态信息特征融合的犯罪预测算法研究
基于公众情感倾向的主题公园评价研究——以哈尔滨市伏尔加庄园为例
数据中心网络中延时敏感的传输控制机制研究
数据中心网络中延时敏感的传输控制协议
多核微处理器体系结构级容软错误设计与评估关键技术研究
数字信号处理器芯片的高层功耗分析方法以及低功耗设计技术的研究