振荡积分及相关课题研究

基本信息
批准号:11471309
项目类别:面上项目
资助金额:60.00
负责人:燕敦验
学科分类:
依托单位:中国科学院大学
批准年份:2014
结题年份:2018
起止时间:2015-01-01 - 2018-12-31
项目状态: 已结题
项目参与者:陆善镇,邓富声,石坐顺华,聂旭东,魏明权,许绍镇,陈广洲,沈峰
关键词:
多线性算子最佳下降阶Fourier变换限制性定理振荡积分
结项摘要

E.M.Stein who won Wolf Prize attributed the oscillatory integral operator to one of the most important three operators in Harmonic Analysis. Actually,the Fourier transform and Bochner-Riesz means are two classical oscillatory integral operators. Stein and Phong investigated a class of oscillatory integral operators with the kernel being smooth function and compact support, and obtained that the sharp L^2 decay estimates of the operator. This work answered the an important conjecture which was put by the distinguished mathematician Arnold.That is, the sharp decay estimate is determinated by Newton polyhedron resulted from the phase function of the oscillatory integral. Motivated by the research results obtained by Stein, we will raise the following questions in the project. (1) Sharp L^p estimates of oscillatory integral operators with polynomial phases and the characterizations of the maximum range of p. (2) Sharp L^p estimates of oscillatory integral operators with real analytic phases and the characterizations of the maximum range of p.(3) On the uniform estimates of the oscillatory integral.(4) The restriction theorem of the generalized Fourier transform.(5) On the multilinear oscillatory integral.(6) The oscillatory integral operators on high-dimension space. The study of those questions can extend the range of research in Harmonic analysis and is possible to give some innovative ideas.

美国科学院院士、Wolf奖得主Stein把振荡积分算子总结为调和分析中最重要的三类算子之一。事实上,Fourier变换和Bochner-Riesz平均都是经典的振荡积分算子。Stein和Phong研究了一类带有紧支集光滑函数为核的振荡积分算子,得到了这类算子的L2范的最佳衰减估计,回答了Wolf奖得主 Arnold 关于最佳衰减数由相位函数的牛顿多面体得到的一个猜想。受Stein等人关于振荡积分研究的启发,本项目将研究下面几个问题。(1)研究一维空间上带多项式相位的振荡积分算子的Lp范衰减估计及刻画p的最大范围;(2) 探讨带实解析函数相位的振荡积分算子的Lp范最佳衰减估计;(3)关于振荡积分算子的一致性估计;(4) 广义Fourier变换的限制性定理;(5) 多线性振荡积分;(6) 高维空间上的振荡积分算子。对这些问题的研究将扩展调和分析的研究方法和范围,极有可能带来方法上的创新。

项目摘要

美国科学院院士、Wolf 奖得主Stein 把振荡积分算子总结为调和分析中最重要的三类算子之一。Fourier 变换和Bochner-Riesz 平均都是经典的振荡积分算子。Stein 和Phong 研究了一类带有紧支集光滑函数为核的振荡积分算子,得到了这类算子的L2范的最佳衰减估计, 回答了Wolf 奖得主 Arnold 关于最佳衰减数由相位函数的牛顿多面体得到的一个猜想。受Stein 等人关于振荡积分研究的启发,本项目提出了下面几个问题。(1) 研究一维空间上带多项式相位的振荡积分算子的Lp 范衰减估计及刻画p 的最大范围;(2) 探讨带实解析函数相位的振荡积分算子的Lp 范最佳衰减估计;(3)关于振荡积分算子的一致性估计;(4) 广义Fourier 变换的限制性定理;(5) 多线性振荡积分;(6) 高维空间上的振荡积分算子。本项目发表了30余篇学术论文,除第5个问题正在研究之外,都给出了解决,此外,还研究了一些相关问题,方法上也有许多创新。

项目成果
{{index+1}}

{{i.achievement_title}}

{{i.achievement_title}}

DOI:{{i.doi}}
发表时间:{{i.publish_year}}

暂无此项成果

数据更新时间:2023-05-31

其他相关文献

1

基于铁路客流分配的旅客列车开行方案调整方法

基于铁路客流分配的旅客列车开行方案调整方法

DOI:
发表时间:2021
2

基于多色集合理论的医院异常工作流处理建模

基于多色集合理论的医院异常工作流处理建模

DOI:
发表时间:2020
3

带有滑动摩擦摆支座的500 kV变压器地震响应

带有滑动摩擦摆支座的500 kV变压器地震响应

DOI:10.13336/j.1003-6520.hve.20200528028
发表时间:2021
4

基于腔内级联变频的0.63μm波段多波长激光器

基于腔内级联变频的0.63μm波段多波长激光器

DOI:10.3788/CJL201946.0801003
发表时间:2019
5

结直肠癌免疫治疗的多模态影像及分子影像评估

结直肠癌免疫治疗的多模态影像及分子影像评估

DOI:10.13609/j.cnki.1000-0313.2022.04.019
发表时间:2022

燕敦验的其他基金

批准号:11871452
批准年份:2018
资助金额:53.00
项目类别:面上项目
批准号:11071250
批准年份:2010
资助金额:24.00
项目类别:面上项目

相似国自然基金

1

振荡积分算子指数衰减性质及相关问题的研究

批准号:11701573
批准年份:2017
负责人:石坐顺华
学科分类:A0205
资助金额:20.00
项目类别:青年科学基金项目
2

若干与振荡积分相关联的问题研究

批准号:11871452
批准年份:2018
负责人:燕敦验
学科分类:A0205
资助金额:53.00
项目类别:面上项目
3

有序正交阵列及相关课题研究

批准号:11201328
批准年份:2012
负责人:李阳
学科分类:A0408
资助金额:22.00
项目类别:青年科学基金项目
4

振荡积分与函数空间

批准号:19301006
批准年份:1993
负责人:杨大春
学科分类:A0205
资助金额:1.60
项目类别:青年科学基金项目