This project aims to apply Gromov-Hausdorff convergence to study the topology of the Riemannian manifold with almost nonnegative Ricci curvature. The Russian mathematician Gromov conjectured that the fundamental group of an arbitrary Riemannian manifold with almost nonnegative Ricci curvature must be nilpotent, furthermore, when the first Betti number was equal to the dimension of the manifold n, this manifold must be homeomorphic to n-torus. In 1997, applying an local integral version of the Toponogov comparison theorem, the American mathematician Colding proved the second part of this conjecture when the dimension is greater than 3. One purpose of this project is to give a relatively simply proof of the second part of the Gromov conjecture from a universal viewpoint by using harmonic 1-forms, and then obtain some further results. The other purpose of this project is to prove that for a closed n-manifold with almost nonnegative Ricci curvature, if the fundamental group is almost nilpotent, then its nilpontency must be less than or equal to n, furthermore, the nilpotency is equal to n if and only if the manifold is homeomorphic to an infranilmanifold. Applying nilpotent group to study rigidity problem instead of Abelian group, it can be regarded as a certain extention of the Gromov conjecture.
本课题旨在应用Gromov-Hausdorff收敛来研究Ricci曲率几乎非负的黎曼流形上的拓扑。俄罗斯数学家Gromov曾经猜想,任何Ricci曲率几乎非负的黎曼流形的基本群必定是几乎幂零的,并且当其第一Betti数为流形维数n时,该流形同胚于n维环面。1997年美国数学家Colding应用局部积分形式的Topnogov比较定理对于维数大于3的情况给出了Gromov猜想第二部分的证明。本课题的一个研究目的是用调和1-形式的方法从整体的角度给出Gromov猜想第二部分的一个相对简单的证明,并得到相关的进一步结论。本课题的另一个研究目的是证明对于一个Ricci曲率几乎非负的n维闭流形,如果其基本群几乎幂零,则其幂零指标一定小于等于流形的维数n,而且其幂零指标等于n当且仅当此流形同胚于一个下幂零流形。这里用幂零群代替交换群研究刚性问题,可看作是Gromov猜想在一定程度上的推广。
本课题的第一个研究目的是关于Gromov猜想的第二部分,从整体的角度去研究第一Betti数等于n的Ricci曲率几乎非负的n维黎曼流形和n维环面之间的关系。我们证明了当该流形维数n大于等于3,Ricci曲率几乎非负,第一Betti数等于n,且体积有下界时,从该流形到n维环面上的Albanese映射是一个Gromov-Hausdorff逼近,即该流形和n维环面的Gromov-Hausdorff距离充分接近。本课题的第二个研究目的是将上面问题中的第一Betti数推广为幂零指标,研究幂零指标等于n且Ricci曲率几乎非负的n维闭流形上的拓扑。对于Ricci曲率几乎非负的n维闭流形,如果其基本群存在有限指标的幂零子群,且幂零指标为n,我们证明出该流形的万有覆盖在Gromov-Hausdorff意义下收敛到n维欧式空间。
{{i.achievement_title}}
数据更新时间:2023-05-31
Intensive photocatalytic activity enhancement of Bi5O7I via coupling with band structure and content adjustable BiOBrxI1-x
Asymmetric Synthesis of (S)-14-Methyl-1-octadecene, the Sex Pheromone of the Peach Leafminer Moth
低轨卫星通信信道分配策略
七羟基异黄酮通过 Id1 影响结直肠癌细胞增殖
Sparse Coding Algorithm with Negentropy and Weighted ℓ1-Norm for Signal Reconstruction
曲率几乎非负的紧致Kahler流形的几何与拓扑
黎曼流形上 Ricci 曲率的几何
Ricci曲率有界流形的几何与拓扑
非负截面曲率流形的几何与拓扑